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Hello, world

● Simon McVittie, Senior Software Engineer, Collabora Ltd
– We do consultancy on open source and open-source-based software

– I'm currently helping Valve to maintain the Steam Runtime, a Debian derivative

– Also an upstream maintainer in dbus, Flatpak, bubblewrap, GLib

● smcv, Debian developer
– GNOME, SDL, Games, Python, Utopia, ... teams

– Technical Committee 2018-2023
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Introduction
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G Object what?

● Write one binding for your language

● Get bindings for all GNOME-adjacent libraries

● Dynamic languages: Python, Perl, JavaScript

● Static languages: Rust, C++, Haskell, D, Vala

● Now partially integrated into GLib
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The GObject type system

● Object-orientation in C
● Classes, subclasses, objects, virtual methods
● Single inheritance, multiple interfaces (like Java)
● “Boxed” types with a copy function and a free function
● Signals and properties
● Some runtime type information
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Two introspection formats
● GIR XML, the API: Foo-1.0.gir

– libfoo-dev or sometimes gir1.2-foo-1.0-dev
– Used in static/compiled languages – Rust, C++, Haskell, D, Vala – to generate source
– XML, human readable, low entropy; human writable (but don’t)
– Architecture independent, except when it isn’t
– Abstract types: size_t g_variant_get_size (GVariant *)

● Typelibs, the ABI: Foo-1.0.typelib
– gir1.2-foo-1.0
– Used in dynamic languages – Python, Perl, JavaScript – to call C functions via FFI
– Dense binary format, architecture dependent
– Generated from GIR XML with a compiler (and some information loss)
– Concrete types: uint64_t g_variant_get_size (GVariant *)
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Generating bindings

Source code
*.c, *.h

g-ir-scanner GIR XML
*.gir

Typelib
*.typelib

g-ir-compiler
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That was, in fact, a lie

● GObject has run-time type information

● Classes are registered with imperative code

● Architecture-independent, except for when it isn’t



9

Yes, you can do this

● Please don’t

if (sizeof (time_t) == 64)
  properties[PROP_TIMESTAMP] = g_param_spec_int64 (...);
else if (sizeof (time_t) == 32)
  properties[PROP_TIMESTAMP] = g_param_spec_int (...);
else
  g_assert_not_reached ();
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Generating bindings (really)

Source code
*.c, *.h

g-ir-scanner GIR XML
*.gir

Library
*.so.*

Typelib
*.typelib

g-ir-compiler

gcc g-ir-scanner +
generated “dumper” executable
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Cross-compiling
● I have a toolchain on the build machine

– Something fast and/or convenient

– Could be x86 for example

● I want binaries for the host machine
– Could be some sort of ARM CPU for example

● Some projects use different terms for maximum confusion
– I’m agreeing with dpkg, Autotools and Meson
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The problem

● Compiling typelibs needs an architecture-specific compiler
– In principle fairly standard, we know how to do this. arm-linux-gnueabihf-g-ir-compiler

● Scanning libraries needs to run host-architecture code
– This is the hard part. I'm running on an x86 (probably), but now I need to run ARM code

● Search paths are different
– GIR XML is architecture-independent, except when it isn’t

– /usr/share/gir-1.0 but also /usr/lib/arm-linux-gnueabihf/gir-1.0
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How to cross-compile G-I, part 1

● Don’t
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How to not cross-compile G-I
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How to cross-compile G-I, part 1: don't
● Build-Profiles: <!nogir>
● Turn off gir1.2-foo-1.0
● Turn off gir1.2-foo-1.0-dev if you have it
● Drop GIR XML from libfoo-dev

– This is an API break, be careful

● Drop Vala bindings from libfoo-dev?
– This is another API break, be careful
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Compensating for API breaks

● Update providers
– libfoo-dev Provides gir1.2-foo-1.0-dev via ${gir:Provides}

● Update all consumers
– (Build-)Depends on gir1.2-foo-1.0-dev, perhaps via ${gir:Depends}

● Now you can safely build with nogir profile

● Now you can split out gir1.2-foo-1.0-dev
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OK, but that wasn't the title of this talk

● I did say I was going to talk about cross-compiling
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How to cross-compile G-I
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How to cross-compile GI, part 2: really

● Cheat
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How g-ir-scanner works

● Mostly written in Python
– Parsing source code

● C extension to interact with libgirepository
● Compiles and runs a small C program to learn about GType

– The “dumper”
– Types, signals, properties, error domains

● Runs ldd to learn library dependencies
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g-ir-scanner, but cross-architecture

● Use the Python code as-is

● Set the search path to use the host ${libdir}

● Run the dumper binary via qemu-user

● Instead of ldd, pick apart the ELF header

● Wrapper script: arm-linux-gnueabihf-g-ir-scanner
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g-ir-compiler, but cross-architecture

● Let’s not do that

● We could build 20 cross-compilers
– 9 Linux release architectures

– 9 Linux ports (with buildds)

– 2 ports with non-Linux kernels

– Needs to “just know” the type sizes and endianness

– Upstream is unlikely to support this



23

g-ir-compiler, but emulated

● We already need qemu-user, right?

● Run the host architecture g-ir-compiler

● Good enough! It doesn’t do anything fancy

● Wrapper script: arm-linux-gnueabihf-g-ir-compiler
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Other tools

● g-ir-doc-tool, g-ir-annotation-tool
– Same shape as g-ir-scanner, but simpler

● gi-compile-repository
– g-ir-compiler, but in GLib

● gi-decompile-typelib, g-ir-generate
– Same shape as g-ir-compiler

● gi-inspect-typelib, g-ir-inspect
– Same shape as g-ir-compiler
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Making your build system help
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Autotools

● Don’t use AC_CHECK_PROG
– Only looks for g-ir-compiler

● Do use AC_CHECK_TOOL
– Looks for arm-linux-gnueabihf-g-ir-compiler first

● introspection.m4 already does the right thing

● That was easy
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Meson

● Needs a cross file
– Or a native file, for non-cross builds

● ${DEB_HOST_GNU_TYPE}-gobject-introspection.ini

● In future, hopefully debcrossgen handles this

● In future, hopefully meson env2mfile handles this
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CMake

● /* TODO */

● Please send a patch or a merge request
– gobject-introspection.README.Debian
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Artisanal hand-assembled Makefiles

● If you’re lucky, it might use ${CROSS_COMPILE}?
– ${CROSS_COMPILE}gcc

– ${CROSS_COMPILE}g-ir-compiler

– Build with CROSS_COMPILE=${DEB_HOST_GNU_TYPE}-
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Others

● /* TODO */

● Please send a patch or a merge request
– gobject-introspection.README.Debian
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Bootstrapping new architectures
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Architecture bootstrapping

● Starting with no packages compiled
– But we do have a complete build architecture

● Don’t want to rely on qemu
– It might not even exist
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Start small

● Build with nogir profile

● No GObject-Introspection tools

● No GIR XML or typelibs

● No tests

● No need for qemu
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Complication: libglib2.0-dev is too big

● A complete GLib now includes gi-compile-repository

● … for the host architecture

● … which is a wrapper script requiring qemu

● … oops
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Start small

● libglib2.0-dev is now a metapackage
– Usually still the right build-dependency

– But avoid it if your package is in the bootstrap set

● Can build-depend on libgio-2.0-dev if that's all you need

● You might also need libgio-2.0-dev-bin

● You might also need libglib2.0-bin
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Side quest:
cross-exe-wrapper
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cross-exe-wrapper

● My first prototype wrapper scripts used qemu directly
● Knowing how to run qemu shouldn’t be G-I’s job
● Better: depend on cross-exe-wrapper

– Part of architecture-properties, thanks to Helmut Grohne

● Run ${DEB_HOST_GNU_TYPE}-cross-exe-wrapper
● Does the right thing, whatever that might be
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Meson exe_wrapper

● You can use this in your Meson builds too
– meson setup -Dexe_wrapper=${DEB_HOST_GNU_TYPE}-cross-exe-wrapper

● In future, maybe debcrossgen will handle this

● In future, maybe meson env2mfile will handle this
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How can I help?
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Existing packages

● Add Provides: ${gir:Provides}
– Or use debhelper compat level 14

● Add Depends: ${gir:Depends}
– Or use debhelper compat level 14
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Existing packages

● Build-depend on what you use
– If your build calls g-ir-scanner --include=Foo-1.0

– Then depend on gir1.2-foo-1.0-dev, if it exists

– If it doesn't exist, send a patch to Foo’s maintainer to Provide it

– Names are APIs and APIs are names
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Existing packages

● Be cross-compile-friendly
– file:///usr/share/doc/gobject-introspection/README.Debian.gz

● If you have a Vala API, give vapigen the same treatment
– https://bugs.debian.org/1061107

– src:libportal has a workaround, but let's not open-code this everywhere

../../../usr/share/doc/gobject-introspection/README.Debian.gz
https://bugs.debian.org/1061107
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Existing packages

● Implement nogir
– file:///usr/share/doc/gobject-introspection/README.Debian.gz

– Can be done with or without going through the NEW queue

../../../usr/share/doc/gobject-introspection/README.Debian.gz
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New packages

● Might as well implement nogir the nice way
– If you're going through NEW anyway, have a separate gir1.2-foo-1.0-dev package

– file:///usr/share/doc/gobject-introspection/README.Debian.gz

../../../usr/share/doc/gobject-introspection/README.Debian.gz
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Build systems

● Use Autotools-style GNU-tuple-prefixed cross-tools
– Yes it's verbose

– Yes it's a GNUism

– But it's a de facto standard and it works

● Or centralize the choice of tool in some other way
– https://bugs.debian.org/1060838

– https://github.com/mesonbuild/meson/pull/13721

https://bugs.debian.org/1060838
https://github.com/mesonbuild/meson/pull/13721
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Thank you!
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We are hiring
col.la/careers

http://col.la/careers
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