
1

Cross-compiling GObject-Introspection

Cambridge Mini-Debconf 2024

2

Hello, world

● Simon McVittie, Senior Software Engineer, Collabora Ltd
– We do consultancy on open source and open-source-based software

– I'm currently helping Valve to maintain the Steam Runtime, a Debian derivative

– Also an upstream maintainer in dbus, Flatpak, bubblewrap, GLib

● smcv, Debian developer
– GNOME, SDL, Games, Python, Utopia, ... teams

– Technical Committee 2018-2023

3

Introduction

4

G Object what?

● Write one binding for your language

● Get bindings for all GNOME-adjacent libraries

● Dynamic languages: Python, Perl, JavaScript

● Static languages: Rust, C++, Haskell, D, Vala

● Now partially integrated into GLib

5

The GObject type system

● Object-orientation in C
● Classes, subclasses, objects, virtual methods
● Single inheritance, multiple interfaces (like Java)
● “Boxed” types with a copy function and a free function
● Signals and properties
● Some runtime type information

6

Two introspection formats
● GIR XML, the API: Foo-1.0.gir

– libfoo-dev or sometimes gir1.2-foo-1.0-dev
– Used in static/compiled languages – Rust, C++, Haskell, D, Vala – to generate source
– XML, human readable, low entropy; human writable (but don’t)
– Architecture independent, except when it isn’t
– Abstract types: size_t g_variant_get_size (GVariant *)

● Typelibs, the ABI: Foo-1.0.typelib
– gir1.2-foo-1.0
– Used in dynamic languages – Python, Perl, JavaScript – to call C functions via FFI
– Dense binary format, architecture dependent
– Generated from GIR XML with a compiler (and some information loss)
– Concrete types: uint64_t g_variant_get_size (GVariant *)

7

Generating bindings

Source code
*.c, *.h

g-ir-scanner GIR XML
*.gir

Typelib
*.typelib

g-ir-compiler

8

That was, in fact, a lie

● GObject has run-time type information

● Classes are registered with imperative code

● Architecture-independent, except for when it isn’t

9

Yes, you can do this

● Please don’t

if (sizeof (time_t) == 64)
 properties[PROP_TIMESTAMP] = g_param_spec_int64 (...);
else if (sizeof (time_t) == 32)
 properties[PROP_TIMESTAMP] = g_param_spec_int (...);
else
 g_assert_not_reached ();

10

Generating bindings (really)

Source code
*.c, *.h

g-ir-scanner GIR XML
*.gir

Library
.so.

Typelib
*.typelib

g-ir-compiler

gcc g-ir-scanner +
generated “dumper” executable

11

Cross-compiling
● I have a toolchain on the build machine

– Something fast and/or convenient

– Could be x86 for example

● I want binaries for the host machine
– Could be some sort of ARM CPU for example

● Some projects use different terms for maximum confusion
– I’m agreeing with dpkg, Autotools and Meson

12

The problem

● Compiling typelibs needs an architecture-specific compiler
– In principle fairly standard, we know how to do this. arm-linux-gnueabihf-g-ir-compiler

● Scanning libraries needs to run host-architecture code
– This is the hard part. I'm running on an x86 (probably), but now I need to run ARM code

● Search paths are different
– GIR XML is architecture-independent, except when it isn’t

– /usr/share/gir-1.0 but also /usr/lib/arm-linux-gnueabihf/gir-1.0

13

How to cross-compile G-I, part 1

● Don’t

14

How to not cross-compile G-I

15

How to cross-compile G-I, part 1: don't
● Build-Profiles: <!nogir>
● Turn off gir1.2-foo-1.0
● Turn off gir1.2-foo-1.0-dev if you have it
● Drop GIR XML from libfoo-dev

– This is an API break, be careful

● Drop Vala bindings from libfoo-dev?
– This is another API break, be careful

16

Compensating for API breaks

● Update providers
– libfoo-dev Provides gir1.2-foo-1.0-dev via ${gir:Provides}

● Update all consumers
– (Build-)Depends on gir1.2-foo-1.0-dev, perhaps via ${gir:Depends}

● Now you can safely build with nogir profile

● Now you can split out gir1.2-foo-1.0-dev

17

OK, but that wasn't the title of this talk

● I did say I was going to talk about cross-compiling

18

How to cross-compile G-I

19

How to cross-compile GI, part 2: really

● Cheat

20

How g-ir-scanner works

● Mostly written in Python
– Parsing source code

● C extension to interact with libgirepository
● Compiles and runs a small C program to learn about GType

– The “dumper”
– Types, signals, properties, error domains

● Runs ldd to learn library dependencies

21

g-ir-scanner, but cross-architecture

● Use the Python code as-is

● Set the search path to use the host ${libdir}

● Run the dumper binary via qemu-user

● Instead of ldd, pick apart the ELF header

● Wrapper script: arm-linux-gnueabihf-g-ir-scanner

22

g-ir-compiler, but cross-architecture

● Let’s not do that

● We could build 20 cross-compilers
– 9 Linux release architectures

– 9 Linux ports (with buildds)

– 2 ports with non-Linux kernels

– Needs to “just know” the type sizes and endianness

– Upstream is unlikely to support this

23

g-ir-compiler, but emulated

● We already need qemu-user, right?

● Run the host architecture g-ir-compiler

● Good enough! It doesn’t do anything fancy

● Wrapper script: arm-linux-gnueabihf-g-ir-compiler

24

Other tools

● g-ir-doc-tool, g-ir-annotation-tool
– Same shape as g-ir-scanner, but simpler

● gi-compile-repository
– g-ir-compiler, but in GLib

● gi-decompile-typelib, g-ir-generate
– Same shape as g-ir-compiler

● gi-inspect-typelib, g-ir-inspect
– Same shape as g-ir-compiler

25

Making your build system help

26

Autotools

● Don’t use AC_CHECK_PROG
– Only looks for g-ir-compiler

● Do use AC_CHECK_TOOL
– Looks for arm-linux-gnueabihf-g-ir-compiler first

● introspection.m4 already does the right thing

● That was easy

27

Meson

● Needs a cross file
– Or a native file, for non-cross builds

● ${DEB_HOST_GNU_TYPE}-gobject-introspection.ini

● In future, hopefully debcrossgen handles this

● In future, hopefully meson env2mfile handles this

28

CMake

● /* TODO */

● Please send a patch or a merge request
– gobject-introspection.README.Debian

29

Artisanal hand-assembled Makefiles

● If you’re lucky, it might use ${CROSS_COMPILE}?
– ${CROSS_COMPILE}gcc

– ${CROSS_COMPILE}g-ir-compiler

– Build with CROSS_COMPILE=${DEB_HOST_GNU_TYPE}-

30

Others

● /* TODO */

● Please send a patch or a merge request
– gobject-introspection.README.Debian

31

Bootstrapping new architectures

32

Architecture bootstrapping

● Starting with no packages compiled
– But we do have a complete build architecture

● Don’t want to rely on qemu
– It might not even exist

33

Start small

● Build with nogir profile

● No GObject-Introspection tools

● No GIR XML or typelibs

● No tests

● No need for qemu

34

Complication: libglib2.0-dev is too big

● A complete GLib now includes gi-compile-repository

● … for the host architecture

● … which is a wrapper script requiring qemu

● … oops

35

Start small

● libglib2.0-dev is now a metapackage
– Usually still the right build-dependency

– But avoid it if your package is in the bootstrap set

● Can build-depend on libgio-2.0-dev if that's all you need

● You might also need libgio-2.0-dev-bin

● You might also need libglib2.0-bin

36

Side quest:
cross-exe-wrapper

37

cross-exe-wrapper

● My first prototype wrapper scripts used qemu directly
● Knowing how to run qemu shouldn’t be G-I’s job
● Better: depend on cross-exe-wrapper

– Part of architecture-properties, thanks to Helmut Grohne

● Run ${DEB_HOST_GNU_TYPE}-cross-exe-wrapper
● Does the right thing, whatever that might be

38

Meson exe_wrapper

● You can use this in your Meson builds too
– meson setup -Dexe_wrapper=${DEB_HOST_GNU_TYPE}-cross-exe-wrapper

● In future, maybe debcrossgen will handle this

● In future, maybe meson env2mfile will handle this

39

How can I help?

40

Existing packages

● Add Provides: ${gir:Provides}
– Or use debhelper compat level 14

● Add Depends: ${gir:Depends}
– Or use debhelper compat level 14

41

Existing packages

● Build-depend on what you use
– If your build calls g-ir-scanner --include=Foo-1.0

– Then depend on gir1.2-foo-1.0-dev, if it exists

– If it doesn't exist, send a patch to Foo’s maintainer to Provide it

– Names are APIs and APIs are names

42

Existing packages

● Be cross-compile-friendly
– file:///usr/share/doc/gobject-introspection/README.Debian.gz

● If you have a Vala API, give vapigen the same treatment
– https://bugs.debian.org/1061107

– src:libportal has a workaround, but let's not open-code this everywhere

../../../usr/share/doc/gobject-introspection/README.Debian.gz
https://bugs.debian.org/1061107

43

Existing packages

● Implement nogir
– file:///usr/share/doc/gobject-introspection/README.Debian.gz

– Can be done with or without going through the NEW queue

../../../usr/share/doc/gobject-introspection/README.Debian.gz

44

New packages

● Might as well implement nogir the nice way
– If you're going through NEW anyway, have a separate gir1.2-foo-1.0-dev package

– file:///usr/share/doc/gobject-introspection/README.Debian.gz

../../../usr/share/doc/gobject-introspection/README.Debian.gz

45

Build systems

● Use Autotools-style GNU-tuple-prefixed cross-tools
– Yes it's verbose

– Yes it's a GNUism

– But it's a de facto standard and it works

● Or centralize the choice of tool in some other way
– https://bugs.debian.org/1060838

– https://github.com/mesonbuild/meson/pull/13721

https://bugs.debian.org/1060838
https://github.com/mesonbuild/meson/pull/13721

46

Thank you!

47

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

