
WITNESS AND COUNTEREXAMPLE AUTOMATA
(Robert Meolic, Alessandro Fantechi, 2004, 2013)

Witness and counterexample automata (WCA) recognize the set of finite linear
witnesses and counterexamples, respectively. Project WCS (2004) resulted in a
program that takes the model (subset of standard CCS) and the set of ACTL/ACTLW
formulae on the input and produces a textual representation of a corresponding
WCA. Technical report about this project can be obtained here:

http://puma.isti.cnr.it/dfdownloadnew.php?ident=/cnr.isti/2011-TR-027&langver=en&scelta=NewMetadata

Files tau.dat, tau.actl, and tau.tcl are simple test of ACTL model checking and WCA
generation.

Here is specification of LTS and its visualisation with LTSA V3.0:

SORT S a,b
PROCESS S
SORT S
INITIAL STATE s0
TRANSITIONS
s0 = a?.s1 + TAU.s1
s1 = b?.s2

Here are ACTL formulae:

TRUE FOR ALL
NOT EX {false} EX {b?} true;
EX {true} EX {b?} true;
EX {tau} EX {b?} true;
EX {a?} EX {b?} true;
NOT EX {NOT a?} EX {b?} true;
NOT AX {true} AX {b?} true;
NOT AX {tau} AX {b?} true;
NOT AX {a?} AX {b?} true;
E[true {false} U EX {b?} true];
E[true {true} U EX {b?} true];
E[true {a?} U EX {b?} true];
E[true {NOT a?} U EX {b?} true];
NOT A[true {false} U AX {b?} true];
A[true {true} U AX {b?} true];
A[true {a?} U AX {b?} true];
NOT A[true {NOT a?} U AX {b?} true];

FALSE FOR ALL
EX {false} EX {b?} true;
NOT EX {true} EX {b?} true;
NOT EX {tau} EX {b?} true;
NOT EX {a?} EX {b?} true;
EX {NOT a?} EX {b?} true;

S

{a, tau}

b

-1 0 1

AX {true} AX {b?} true;
AX {tau} AX {b?} true;
AX {a?} AX {b?} true;
NOT E[true {false} U EX {b?} true];
NOT E[true {true} U EX {b?} true];
NOT E[true {a?} U EX {b?} true];
NOT E[true {NOT a?} U EX {b?} true];
A[true {false} U AX {b?} true];
NOT A[true {true} U AX {b?} true];
NOT A[true {a?} U AX {b?} true];
A[true {NOT a?} U AX {b?} true];

Here is the log from EST:

Efficient Symbolic Tools, 2nd Edition, Copyright (C) 2003-2013 UM-FERI
This is free software, and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute EST; type "license" for details.

Running on i686 (Linux, 3.2.0-38-generic-pae) with tcl 8.5.11 and tk 8.5.11.

Initialization of GUI package... OK
Initialization of BDD package... OK
Initialization of Process_Algebra package... OK
Initialization of Versis package... OK
Initialization of Model checking package... OK
Initialization of Strucval package... OK
Initialization of CCS package... OK
Ready.

>cd "/home/meolic/est/est-2ed/data/automata"; source "tau.tcl"; cd "/home/meolic/est/est-2ed/data"
Reading file: tau.dat
 Sort S ... OK
 Process S ... OK

ACTL/ACTLW model checking on process S

TRUE FOR ALL
NOT EX{false} EX{b?} true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
EX{true} EX{b?} true ==> TRUE
Witness: (a?)(b?)
Witness automaton WC1S has been constructed.
EX{TAU} EX{b?} true ==> TRUE
Witness: (TAU)(b?)
Witness automaton WC2S has been constructed.
EX{a?} EX{b?} true ==> TRUE
Witness: (a?)(b?)
Witness automaton WC3S has been constructed.
NOT EX{NOT a?} EX{b?} true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT AX{true} AX{b?} true ==> TRUE
Witness: (TAU)
Witness automaton WC4S has been constructed.
NOT AX{TAU} AX{b?} true ==> TRUE
Witness: (a?)
Witness automaton WC5S has been constructed.
NOT AX{a?} AX{b?} true ==> TRUE
Witness: (TAU)
Witness automaton WC6S has been constructed.
E[true {false}U EX{b?} true] ==> TRUE
Witness: (TAU)(b?)
Witness automaton WC7S has been constructed.
E[true {true}U EX{b?} true] ==> TRUE
Witness: (TAU)(b?)
Witness automaton WC8S has been constructed.
E[true {a?}U EX{b?} true] ==> TRUE

Witness: (TAU)(b?)
Witness automaton WC9S has been constructed.
E[true {NOT a?}U EX{b?} true] ==> TRUE
Witness: (TAU)(b?)
Witness automaton WC10S has been constructed.
NOT A[true {false}U AX{b?} true] ==> TRUE
Witness: (a?)
Witness automaton cannot be constructed.
A[true {true}U AX{b?} true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
A[true {a?}U AX{b?} true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT A[true {NOT a?}U AX{b?} true] ==> TRUE
Witness: (a?)
Witness automaton cannot be constructed.
FALSE FOR ALL
EX{false} EX{b?} true ==> FALSE
Counterexample not generated.
Counterexample automaton cannot be constructed.
NOT EX{true} EX{b?} true ==> FALSE
Counterexample: (a?)(b?)
Counterexample automaton WC11S has been constructed.
NOT EX{TAU} EX{b?} true ==> FALSE
Counterexample: (TAU)(b?)
Counterexample automaton WC12S has been constructed.
NOT EX{a?} EX{b?} true ==> FALSE
Counterexample: (a?)(b?)
Counterexample automaton WC13S has been constructed.
EX{NOT a?} EX{b?} true ==> FALSE
Counterexample not generated.
Counterexample automaton cannot be constructed.
AX{true} AX{b?} true ==> FALSE
Counterexample: (TAU)
Counterexample automaton WC14S has been constructed.
AX{TAU} AX{b?} true ==> FALSE
Counterexample: (a?)
Counterexample automaton WC15S has been constructed.
AX{a?} AX{b?} true ==> FALSE
Counterexample: (TAU)
Counterexample automaton WC16S has been constructed.
NOT E[true {false}U EX{b?} true] ==> FALSE
Counterexample: (TAU)(b?)
Counterexample automaton WC17S has been constructed.
NOT E[true {true}U EX{b?} true] ==> FALSE
Counterexample: (TAU)(b?)
Counterexample automaton WC18S has been constructed.
NOT E[true {a?}U EX{b?} true] ==> FALSE
Counterexample: (TAU)(b?)
Counterexample automaton WC19S has been constructed.
NOT E[true {NOT a?}U EX{b?} true] ==> FALSE
Counterexample: (TAU)(b?)
Counterexample automaton WC20S has been constructed.
A[true {false}U AX{b?} true] ==> FALSE
Counterexample: (a?)
Counterexample automaton cannot be constructed.
NOT A[true {true}U AX{b?} true] ==> FALSE
Counterexample not generated.
Counterexample automaton cannot be constructed.
NOT A[true {a?}U AX{b?} true] ==> FALSE
Counterexample not generated.
Counterexample automaton cannot be constructed.
A[true {NOT a?}U AX{b?} true] ==> FALSE
Counterexample: (a?)
Counterexample automaton cannot be constructed.

PROCESS S
INITIAL STATE s0
s0 = a? . s1 + TAU . s1
s1 = b? . s2

PROCESS WC1S
INITIAL STATE wc1
FINAL STATES wc3

wc1 = a? . wc2
wc2 = b? . wc3

PROCESS WC2S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2
wc2 = b? . wc3

PROCESS WC3S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = a? . wc2
wc2 = b? . wc3

PROCESS WC4S
INITIAL STATE wc1
FINAL STATES wc2
wc1 = TAU . wc2

PROCESS WC5S
INITIAL STATE wc1
FINAL STATES wc2
wc1 = a? . wc2

PROCESS WC6S
INITIAL STATE wc1
FINAL STATES wc2
wc1 = TAU . wc2

PROCESS WC7S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2
wc2 = b? . wc3

PROCESS WC8S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2 + a? . wc2
wc2 = b? . wc3

PROCESS WC9S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2 + a? . wc2
wc2 = b? . wc3

PROCESS WC10S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2
wc2 = b? . wc3

PROCESS WC11S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = a? . wc2
wc2 = b? . wc3

PROCESS WC12S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2
wc2 = b? . wc3

PROCESS WC13S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = a? . wc2
wc2 = b? . wc3

PROCESS WC14S
INITIAL STATE wc1
FINAL STATES wc2

wc1 = TAU . wc2

PROCESS WC15S
INITIAL STATE wc1
FINAL STATES wc2
wc1 = a? . wc2

PROCESS WC16S
INITIAL STATE wc1
FINAL STATES wc2
wc1 = TAU . wc2

PROCESS WC17S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2
wc2 = b? . wc3

PROCESS WC18S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2 + a? . wc2
wc2 = b? . wc3

PROCESS WC19S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2 + a? . wc2
wc2 = b? . wc3

PROCESS WC20S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2
wc2 = b? . wc3

EST can explain generation of WC automata.

>mc_check_actl_file 0 S /home/meolic/est/est-2ed/data/automata/tau.actl [expr $mc_automaton |
$mc_explain]
ACTL/ACTLW model checking on process S

TRUE FOR ALL
NOT EX{false} EX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT EX{false} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `EX{false} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Witness automaton cannot be constructed.
@@ End Of Diagnostic

EX{true} EX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EX{true} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ Witness automaton WC21S has been constructed.
PROCESS WC21S
INITIAL STATE wc1
Number of states: 3

Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = a? . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

EX{TAU} EX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EX{TAU} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ Witness automaton WC22S has been constructed.
PROCESS WC22S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = TAU . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

EX{a?} EX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EX{a?} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ Witness automaton WC23S has been constructed.
PROCESS WC23S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = a? . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

NOT EX{NOT a?} EX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT EX{NOT a?} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `EX{NOT a?} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Witness automaton cannot be constructed.
@@ End Of Diagnostic

NOT AX{true} AX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT AX{true} AX{b?} true' for (s=s0, t=wc1)

@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `AX{true} AX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ CAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: state wc2 marked as final
@@ Witness automaton WC24S has been constructed.
PROCESS WC24S
INITIAL STATE wc1
Number of states: 2
Number of final states: 1
FINAL STATES wc2
Number of transitions: 1
wc1 = TAU . wc2
@@ End Of Diagnostic

NOT AX{TAU} AX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT AX{TAU} AX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `AX{TAU} AX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ CAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: state wc2 marked as final
@@ Witness automaton WC25S has been constructed.
PROCESS WC25S
INITIAL STATE wc1
Number of states: 2
Number of final states: 1
FINAL STATES wc2
Number of transitions: 1
wc1 = a? . wc2
@@ End Of Diagnostic

NOT AX{a?} AX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT AX{a?} AX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `AX{a?} AX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ CAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: state wc2 marked as final
@@ Witness automaton WC26S has been constructed.
PROCESS WC26S
INITIAL STATE wc1
Number of states: 2
Number of final states: 1
FINAL STATES wc2
Number of transitions: 1
wc1 = TAU . wc2
@@ End Of Diagnostic

E[true {false}U EX{b?} true] ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `E[true {false}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `E[true {false}U EX{b?} true]' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final

@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: transition wc1-TAU?->wc2 exists
@@ Witness automaton WC27S has been constructed.
PROCESS WC27S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = TAU . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

E[true {true}U EX{b?} true] ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `E[true {true}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `E[true {true}U EX{b?} true]' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ WAbuild: chosen transition s0-a?->s1 from delta1
@@ conbuild: created transition wc1-a?->wc2
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: transition wc1-TAU?->wc2 exists
@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: transition wc1-a?->wc2 exists
@@ Witness automaton WC28S has been constructed.
PROCESS WC28S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 3
wc1 = TAU . wc2 + a? . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

E[true {a?}U EX{b?} true] ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `E[true {a?}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `E[true {a?}U EX{b?} true]' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ WAbuild: chosen transition s0-a?->s1 from delta1
@@ conbuild: created transition wc1-a?->wc2
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: transition wc1-TAU?->wc2 exists
@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: transition wc1-a?->wc2 exists
@@ Witness automaton WC29S has been constructed.
PROCESS WC29S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1

FINAL STATES wc3
Number of transitions: 3
wc1 = TAU . wc2 + a? . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

E[true {NOT a?}U EX{b?} true] ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `E[true {NOT a?}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `E[true {NOT a?}U EX{b?} true]' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: transition wc1-TAU?->wc2 exists
@@ Witness automaton WC30S has been constructed.
PROCESS WC30S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = TAU . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

NOT A[true {false}U AX{b?} true] ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT A[true {false}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `A[true {false}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Witness automaton cannot be constructed.
@@ End Of Diagnostic

A[true {true}U AX{b?} true] ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `A[true {true}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Witness automaton cannot be constructed.
@@ End Of Diagnostic

A[true {a?}U AX{b?} true] ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `A[true {a?}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Witness automaton cannot be constructed.
@@ End Of Diagnostic

NOT A[true {NOT a?}U AX{b?} true] ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT A[true {NOT a?}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `A[true {NOT a?}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Witness automaton cannot be constructed.
@@ End Of Diagnostic

FALSE FOR ALL
EX{false} EX{b?} true ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EX{false} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Counterexample automaton cannot be constructed.
@@ End Of Diagnostic

NOT EX{true} EX{b?} true ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT EX{true} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `EX{true} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ Counterexample automaton WC31S has been constructed.
PROCESS WC31S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = a? . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

NOT EX{TAU} EX{b?} true ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT EX{TAU} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `EX{TAU} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ Counterexample automaton WC32S has been constructed.
PROCESS WC32S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = TAU . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

NOT EX{a?} EX{b?} true ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT EX{a?} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `EX{a?} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula

@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ Counterexample automaton WC33S has been constructed.
PROCESS WC33S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = a? . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

EX{NOT a?} EX{b?} true ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EX{NOT a?} EX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Counterexample automaton cannot be constructed.
@@ End Of Diagnostic

AX{true} AX{b?} true ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `AX{true} AX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ CAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: state wc2 marked as final
@@ Counterexample automaton WC34S has been constructed.
PROCESS WC34S
INITIAL STATE wc1
Number of states: 2
Number of final states: 1
FINAL STATES wc2
Number of transitions: 1
wc1 = TAU . wc2
@@ End Of Diagnostic

AX{TAU} AX{b?} true ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `AX{TAU} AX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ CAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: state wc2 marked as final
@@ Counterexample automaton WC35S has been constructed.
PROCESS WC35S
INITIAL STATE wc1
Number of states: 2
Number of final states: 1
FINAL STATES wc2
Number of transitions: 1
wc1 = a? . wc2
@@ End Of Diagnostic

AX{a?} AX{b?} true ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `AX{a?} AX{b?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ CAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2

@@ generate: state wc2 marked as final
@@ Counterexample automaton WC36S has been constructed.
PROCESS WC36S
INITIAL STATE wc1
Number of states: 2
Number of final states: 1
FINAL STATES wc2
Number of transitions: 1
wc1 = TAU . wc2
@@ End Of Diagnostic

NOT E[true {false}U EX{b?} true] ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT E[true {false}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `E[true {false}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `E[true {false}U EX{b?} true]' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: transition wc1-TAU?->wc2 exists
@@ Counterexample automaton WC37S has been constructed.
PROCESS WC37S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = TAU . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

NOT E[true {true}U EX{b?} true] ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT E[true {true}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `E[true {true}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `E[true {true}U EX{b?} true]' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ WAbuild: chosen transition s0-a?->s1 from delta1
@@ conbuild: created transition wc1-a?->wc2
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: transition wc1-TAU?->wc2 exists
@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: transition wc1-a?->wc2 exists
@@ Counterexample automaton WC38S has been constructed.
PROCESS WC38S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 3

wc1 = TAU . wc2 + a? . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

NOT E[true {a?}U EX{b?} true] ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT E[true {a?}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `E[true {a?}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `E[true {a?}U EX{b?} true]' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ WAbuild: chosen transition s0-a?->s1 from delta1
@@ conbuild: created transition wc1-a?->wc2
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: transition wc1-TAU?->wc2 exists
@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: transition wc1-a?->wc2 exists
@@ Counterexample automaton WC39S has been constructed.
PROCESS WC39S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 3
wc1 = TAU . wc2 + a? . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

NOT E[true {NOT a?}U EX{b?} true] ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT E[true {NOT a?}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `E[true {NOT a?}U EX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-TAU?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-TAU?->wc2
@@ generate: starting formula `E[true {NOT a?}U EX{b?} true]' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: state wc3 marked as final
@@ WAbuild: chosen transition s0-TAU?->s1 from delta2
@@ conbuild: transition wc1-TAU?->wc2 exists
@@ Counterexample automaton WC40S has been constructed.
PROCESS WC40S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = TAU . wc2
wc2 = b? . wc3
@@ End Of Diagnostic

A[true {false}U AX{b?} true] ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton

@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `A[true {false}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Counterexample automaton cannot be constructed.
@@ End Of Diagnostic

NOT A[true {true}U AX{b?} true] ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT A[true {true}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `A[true {true}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Counterexample automaton cannot be constructed.
@@ End Of Diagnostic

NOT A[true {a?}U AX{b?} true] ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `NOT A[true {a?}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `A[true {a?}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Counterexample automaton cannot be constructed.
@@ End Of Diagnostic

A[true {NOT a?}U AX{b?} true] ==> FALSE
@@ Creating counterexample automaton
@@ WCAgenerator: created empty counterexample automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `A[true {NOT a?}U AX{b?} true]' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ Counterexample automaton cannot be constructed.
@@ End Of Diagnostic

Files deadlock.dat, deadlock.actl, and deadlock.tcl are another simple test of
ACTL/ACTLW model checking and WCA generation.

Here is specification of LTS (empty process!)

SORT S a,b
PROCESS S
SORT S
INITIAL STATE s0
TRANSITIONS

Here are ACTL/ACTLW formulae:

/* ### TRUE FOR ALL ### */

NOT EEX {a?} true;
NOT EEF {a?} true;
EEG {a?} true;
NOT EEG false {a?};
EEG true {a?};
NOT EE[{a?} true U {b?} true];
EE[{a?} true W {b?} true];
NOT EE[true {a?} U {b?} true];
EE[true {a?} W {b?} true];

AAX {a?} true;
NOT AAF {a?} true;
AAG {a?} true;
NOT AAG false {a?};
AAG true {a?};
NOT AA[{a?} true U {b?} true];
AA[{a?} true W {b?} true];
NOT AA[true {a?} U {b?} true];
AA[true {a?} W {b?} true];

NOT EX {false} false;
NOT EX {true} true;
NOT EX {tau} false;
NOT EX {tau} true;
NOT EF false;
EF true;
NOT EG false;
EG true;
E[false {a?}U true];
NOT E[false {a?} U {b?} true];
E[true {a?} U true];
NOT E[true {a?} U {b?} true];

NOT AX {false} false;
NOT AX {true} true;
NOT AX {tau} false;
NOT AX {tau} true;
NOT AF false;
AF true;
NOT AG false;
AG true;
A[false {a?} U true];
NOT A[false {a?} U {b?} true];
A[true {a?} U true];
NOT A[true {a?} U {b?} true];

NOT <a?> false;
NOT <a?> true;
[a?] false;
[a?] true;

Here is the log from EST:

Efficient Symbolic Tools, 2nd Edition, Copyright (C) 2003-2013 UM-FERI
This is free software, and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute EST; type "license" for details.

Running on i686 (Linux, 3.2.0-38-generic-pae) with tcl 8.5.11 and tk 8.5.11.

Initialization of GUI package... OK
Initialization of BDD package... OK
Initialization of Process_Algebra package... OK
Initialization of Versis package... OK

Initialization of Model checking package... OK
Initialization of Strucval package... OK
Initialization of CCS package... OK
Ready.

>cd "/home/meolic/est/est-2ed/data/automata"; source "deadlock.tcl"; cd "/home/meolic/est/est-
2ed/data"
Reading file: deadlock.dat
 Sort S ... OK
 Process S ... OK

ACTL/ACTLW model checking on process S

NOT EEX {a?} true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT EEF {a?} true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
EEG {a?} true ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT EEG false {a?} ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
EEG true {a?} ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT EE[{a?} true U {b?} true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
EE[{a?} true W {b?} true] ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT EE[true {a?} U {b?} true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
EE[true {a?} W {b?} true] ==> TRUE
Witness not generated.
Witness automaton not constructed.
AAX {a?} true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT AAF {a?} true ==> TRUE
Witness not generated.
Witness automaton not constructed.
AAG {a?} true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT AAG false {a?} ==> TRUE
Witness not generated.
Witness automaton not constructed.
AAG true {a?} ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT AA[{a?} true U {b?} true] ==> TRUE
Witness not generated.
Witness automaton not constructed.
AA[{a?} true W {b?} true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT AA[true {a?} U {b?} true] ==> TRUE
Witness not generated.
Witness automaton not constructed.
AA[true {a?} W {b?} true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT EX{false} false ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT EX{true} true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT EX{TAU} false ==> TRUE
Witness not generated.

Witness automaton cannot be constructed.
NOT EX{TAU} true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT EF false ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
EF true ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT EG false ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
EG true ==> TRUE
Witness not generated.
Witness automaton not constructed.
E[false {a?}U true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT E[false {a?}U{b?} true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
E[true {a?}U true] ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT E[true {a?}U{b?} true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT AX{false} false ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT AX{true} true ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT AX{TAU} false ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT AX{TAU} true ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT AF false ==> TRUE
Witness not generated.
Witness automaton not constructed.
AF true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT AG false ==> TRUE
Witness not generated.
Witness automaton not constructed.
AG true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
A[false {a?}U true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT A[false {a?}U{b?} true] ==> TRUE
Witness not generated.
Witness automaton not constructed.
A[true {a?}U true] ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT A[true {a?}U{b?} true] ==> TRUE
Witness not generated.
Witness automaton not constructed.
NOT <a?> false ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
NOT <a?> true ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
[a?] false ==> TRUE
Witness not generated.
Witness automaton cannot be constructed.
[a?] true ==> TRUE
Witness not generated.

Witness automaton cannot be constructed.

Files alessandro.dat, alessandro.actl, and alessandro.tcl are test of WCA
generation proposed by Alessandro Fantechi.

Here is specification of LTS and its visualisation with LTSA V3.0:

SORT sortAutomata a,b,c,d,e,k
PROCESS Mod0
SORT sortAutomata
INITIAL STATE s0
TRANSITIONS
s0 = a?.s1
s0 = b?.s2
s1 = b?.s4
s1 = c?.s3
s2 = c?.s3
s3 = b?.s2
s4 = e?.s5
s4 = d?.s6
s4 = c?.s7
s5 = k!.s8
s6 = e?.s9
s7 = d?.s4
s8 = a?.s3
s8 = d?.s9
s9 = a?.s3

Mod0

a

b c

b

b

c

c

e

d e

a

k

a

d

d

0 1 2 3 4 5 6 7 8 9

The following (almost equivalent) ACTL and ACTLW formula are used:

EF EX {k!} true;
EEF {true} EEX {k!} true;

Here is the log from EST:

Efficient Symbolic Tools, 2nd Edition, Copyright (C) 2003-2013 UM-FERI
This is free software, and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute EST; type "license" for details.

Running on i686 (Linux, 3.2.0-38-generic-pae) with tcl 8.5.11 and tk 8.5.11.

Initialization of GUI package... OK
Initialization of BDD package... OK
Initialization of Process_Algebra package... OK
Initialization of Versis package... OK
Initialization of Model checking package... OK
Initialization of Strucval package... OK
Initialization of CCS package... OK
Ready.

>cd "/home/meolic/est/est-2ed/data/automata"; source "alessandro.tcl"; cd "/home/meolic/est/est-
2ed/data"
Reading file: alessandro.dat
 Sort sortAutomata ... OK
 Process Mod0 ... OK

ACTL/ACTLW model checking on process Mod0

EF EX{k!} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EF EX{k!} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-a?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: starting formula `EF EX{k!} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s4 from delta1
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `EF EX{k!} true' for (s=s4, t=wc3)
@@ generate: added pair (wc3,s4) to R for the current formula
@@ WAbuild: chosen transition s4-c?->s7 from delta1
@@ conbuild: created state wc4, created transition wc3-c?->wc4
@@ generate: starting formula `EF EX{k!} true' for (s=s7, t=wc4)
@@ generate: added pair (wc4,s7) to R for the current formula
@@ WAbuild: chosen transition s7-d?->s4 from delta1
@@ conbuild: created transition wc4-d?->wc3
@@ WAbuild: chosen transition s4-e?->s5 from delta1
@@ conbuild: created state wc5, created transition wc3-e?->wc5
@@ generate: starting formula `EF EX{k!} true' for (s=s5, t=wc5)
@@ generate: added pair (wc5,s5) to R for the current formula
@@ generate: starting formula `EX{k!} true' for (s=s5, t=wc5)
@@ generate: added pair (wc5,s5) to R for the current formula
@@ WAbuild: chosen transition s5-k!->s8 from delta2
@@ conbuild: created state wc6, created transition wc5-k!->wc6
@@ generate: starting formula `true' for (s=s8, t=wc6)
@@ generate: added pair (wc6,s8) to R for the current formula
@@ generate: state wc6 marked as final
@@ WAbuild: chosen transition s4-e?->s5 from delta2
@@ conbuild: transition wc3-e?->wc5 exists
@@ Witness automaton WC1Mod0 has been constructed.
PROCESS WC1Mod0
INITIAL STATE wc1
Number of states: 6
Number of final states: 1
FINAL STATES wc6
Number of transitions: 6
wc1 = a? . wc2

wc2 = b? . wc3
wc3 = c? . wc4 + e? . wc5
wc4 = d? . wc3
wc5 = k! . wc6
@@ End Of Diagnostic

EEF {true} EEX {k!} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EEF {true} EEX {k!} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-a?->s1 from delta1
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: starting formula `EEF {true} EEX {k!} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s4 from delta1
@@ conbuild: created state wc3, created transition wc2-b?->wc3
@@ generate: starting formula `EEF {true} EEX {k!} true' for (s=s4, t=wc3)
@@ generate: added pair (wc3,s4) to R for the current formula
@@ WAbuild: chosen transition s4-c?->s7 from delta1
@@ conbuild: created state wc4, created transition wc3-c?->wc4
@@ generate: starting formula `EEF {true} EEX {k!} true' for (s=s7, t=wc4)
@@ generate: added pair (wc4,s7) to R for the current formula
@@ WAbuild: chosen transition s7-d?->s4 from delta1
@@ conbuild: created transition wc4-d?->wc3
@@ WAbuild: chosen transition s4-e?->s5 from delta2
@@ conbuild: created state wc5, created transition wc3-e?->wc5
@@ generate: starting formula `EEX {k!} true' for (s=s5, t=wc5)
@@ generate: added pair (wc5,s5) to R for the current formula
@@ WAbuild: chosen transition s5-k!->s8 from delta2
@@ conbuild: created state wc6, created transition wc5-k!->wc6
@@ generate: starting formula `true' for (s=s8, t=wc6)
@@ generate: added pair (wc6,s8) to R for the current formula
@@ generate: state wc6 marked as final
@@ Witness automaton WC2Mod0 has been constructed.
PROCESS WC2Mod0
INITIAL STATE wc1
Number of states: 6
Number of final states: 1
FINAL STATES wc6
Number of transitions: 6
wc1 = a? . wc2
wc2 = b? . wc3
wc3 = c? . wc4 + e? . wc5
wc4 = d? . wc3
wc5 = k! . wc6
@@ End Of Diagnostic

ACTL/ACTLW formula can be also given as a string. Here is an example:

>mc_check_actl_string 0 Mod0 "EF EX{a?} true" [expr $mc_automaton | $mc_explain]
ACTL/ACTLW model checking on process Mod0

EF EX{a?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EF EX{a?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ generate: starting formula `EX{a?} true' for (s=s0, t=wc1)
@@ generate: added pair (wc1,s0) to R for the current formula
@@ WAbuild: chosen transition s0-a?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: starting formula `true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ generate: state wc2 marked as final
@@ WAbuild: chosen transition s0-a?->s1 from delta1
@@ conbuild: created state wc3, created transition wc1-a?->wc3
@@ generate: starting formula `EF EX{a?} true' for (s=s1, t=wc3)
@@ generate: added pair (wc3,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s4 from delta1
@@ conbuild: created state wc4, created transition wc3-b?->wc4

@@ generate: starting formula `EF EX{a?} true' for (s=s4, t=wc4)
@@ generate: added pair (wc4,s4) to R for the current formula
@@ WAbuild: chosen transition s4-c?->s7 from delta1
@@ conbuild: created state wc5, created transition wc4-c?->wc5
@@ generate: starting formula `EF EX{a?} true' for (s=s7, t=wc5)
@@ generate: added pair (wc5,s7) to R for the current formula
@@ WAbuild: chosen transition s7-d?->s4 from delta1
@@ conbuild: created transition wc5-d?->wc4
@@ WAbuild: chosen transition s4-e?->s5 from delta1
@@ conbuild: created state wc6, created transition wc4-e?->wc6
@@ generate: starting formula `EF EX{a?} true' for (s=s5, t=wc6)
@@ generate: added pair (wc6,s5) to R for the current formula
@@ WAbuild: chosen transition s5-k!->s8 from delta1
@@ conbuild: created state wc7, created transition wc6-k!->wc7
@@ generate: starting formula `EF EX{a?} true' for (s=s8, t=wc7)
@@ generate: added pair (wc7,s8) to R for the current formula
@@ generate: starting formula `EX{a?} true' for (s=s8, t=wc7)
@@ generate: added pair (wc7,s8) to R for the current formula
@@ WAbuild: chosen transition s8-a?->s3 from delta2
@@ conbuild: created state wc8, created transition wc7-a?->wc8
@@ generate: starting formula `true' for (s=s3, t=wc8)
@@ generate: added pair (wc8,s3) to R for the current formula
@@ generate: state wc8 marked as final
@@ WAbuild: chosen transition s8-d?->s9 from delta1
@@ conbuild: created state wc9, created transition wc7-d?->wc9
@@ generate: starting formula `EF EX{a?} true' for (s=s9, t=wc9)
@@ generate: added pair (wc9,s9) to R for the current formula
@@ generate: starting formula `EX{a?} true' for (s=s9, t=wc9)
@@ generate: added pair (wc9,s9) to R for the current formula
@@ WAbuild: chosen transition s9-a?->s3 from delta2
@@ conbuild: created transition wc9-a?->wc8
@@ WAbuild: chosen transition s8-d?->s9 from delta2
@@ conbuild: transition wc7-d?->wc9 exists
@@ WAbuild: chosen transition s5-k!->s8 from delta2
@@ conbuild: transition wc6-k!->wc7 exists
@@ WAbuild: chosen transition s4-d?->s6 from delta1
@@ conbuild: created state wc10, created transition wc4-d?->wc10
@@ generate: starting formula `EF EX{a?} true' for (s=s6, t=wc10)
@@ generate: added pair (wc10,s6) to R for the current formula
@@ WAbuild: chosen transition s6-e?->s9 from delta1
@@ conbuild: created transition wc10-e?->wc9
@@ WAbuild: chosen transition s6-e?->s9 from delta2
@@ conbuild: transition wc10-e?->wc9 exists
@@ Witness automaton WC3Mod0 has been constructed.
PROCESS WC3Mod0
INITIAL STATE wc1
Number of states: 10
Number of final states: 2
FINAL STATES wc2 wc8
Number of transitions: 12
wc1 = a? . wc2 + a? . wc3
wc3 = b? . wc4
wc4 = c? . wc5 + e? . wc6 + d? . wc10
wc5 = d? . wc4
wc6 = k! . wc7
wc10 = e? . wc9
wc7 = a? . wc8 + d? . wc9
wc9 = a? . wc8
@@ End Of Diagnostic

Files example1.dat, example1.ccs, example1.actl, and example1.tcl are first
example of WCA generation given in paper "Witness and Counterexample
Automata for ACTL" (FORTE 2004). Format .dat is preffered over .ccs because CCS
parser renames states and thus explanations are not directly usable.

Here is the log from EST:

Efficient Symbolic Tools, 2nd Edition, Copyright (C) 2003-2013 UM-FERI
This is free software, and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute EST; type "license" for details.

Running on i686 (Linux, 3.2.0-38-generic-pae) with tcl 8.5.11 and tk 8.5.11.

Initialization of GUI package... OK
Initialization of BDD package... OK
Initialization of Process_Algebra package... OK
Initialization of Versis package... OK
Initialization of Model checking package... OK
Initialization of Strucval package... OK
Initialization of CCS package... OK
Ready.

>cd "/home/meolic/est/est-2ed/data/automata"; source "example1.tcl"; cd "/home/meolic/est/est-
2ed/data"
Reading file: example1.dat
 Sort S ... OK
 Process S ... OK

ACTL/ACTLW model checking on process S

EX{a?} EX{a?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EX{a?} EX{a?} true' for (s=s1, t=wc1)
@@ generate: added pair (wc1,s1) to R for the current formula
@@ WAbuild: chosen transition s1-a?->s1 from delta2
@@ conbuild: created state wc2, created transition wc1-a?->wc2
@@ generate: starting formula `EX{a?} true' for (s=s1, t=wc2)
@@ generate: added pair (wc2,s1) to R for the current formula
@@ WAbuild: chosen transition s1-a?->s1 from delta2
@@ conbuild: created state wc3, created transition wc2-a?->wc3
@@ generate: starting formula `true' for (s=s1, t=wc3)
@@ generate: added pair (wc3,s1) to R for the current formula
@@ generate: state wc3 marked as final
@@ Witness automaton WC1S has been constructed.
PROCESS WC1S
INITIAL STATE wc1
Number of states: 3
Number of final states: 1
FINAL STATES wc3
Number of transitions: 2
wc1 = a? . wc2
wc2 = a? . wc3
@@ End Of Diagnostic

EF EX{b?} true ==> TRUE
@@ Creating witness automaton
@@ WCAgenerator: created empty witness automaton
@@ WCAgenerator: created initial state wc1
@@ generate: starting formula `EF EX{b?} true' for (s=s1, t=wc1)
@@ generate: added pair (wc1,s1) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s1, t=wc1)
@@ generate: added pair (wc1,s1) to R for the current formula
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: created state wc2, created transition wc1-b?->wc2
@@ generate: starting formula `true' for (s=s2, t=wc2)
@@ generate: added pair (wc2,s2) to R for the current formula
@@ generate: state wc2 marked as final
@@ WAbuild: chosen transition s1-a?->s1 from delta1
@@ conbuild: created transition wc1-a?->wc1
@@ WAbuild: chosen transition s1-b?->s2 from delta1
@@ conbuild: created state wc3, created transition wc1-b?->wc3
@@ generate: starting formula `EF EX{b?} true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ generate: starting formula `EX{b?} true' for (s=s2, t=wc3)
@@ generate: added pair (wc3,s2) to R for the current formula
@@ WAbuild: chosen transition s2-b?->s3 from delta2
@@ conbuild: created state wc4, created transition wc3-b?->wc4
@@ generate: starting formula `true' for (s=s3, t=wc4)
@@ generate: added pair (wc4,s3) to R for the current formula
@@ generate: state wc4 marked as final
@@ WAbuild: chosen transition s1-a?->s1 from delta2
@@ conbuild: transition wc1-a?->wc1 exists
@@ WAbuild: chosen transition s1-b?->s2 from delta2
@@ conbuild: transition wc1-b?->wc3 exists

@@ Witness automaton WC2S has been constructed.
PROCESS WC2S
INITIAL STATE wc1
Number of states: 4
Number of final states: 2
FINAL STATES wc2 wc4
Number of transitions: 4
wc1 = b? . wc2 + a? . wc1 + b? . wc3
wc3 = b? . wc4
@@ End Of Diagnostic

Files example2.ccs, example2.actl, and example2.tcl are second example of WCA
generation given in paper "Witness and Counterexample Automata for ACTL"
(FORTE 2004).

Here is the log from EST:

Efficient Symbolic Tools, 2nd Edition, Copyright (C) 2003-2013 UM-FERI
This is free software, and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute EST; type "license" for details.

Running on i686 (Linux, 3.2.0-38-generic-pae) with tcl 8.5.11 and tk 8.5.11.

Initialization of GUI package... OK
Initialization of BDD package... OK
Initialization of Process_Algebra package... OK
Initialization of Versis package... OK
Initialization of Model checking package... OK
Initialization of Strucval package... OK
Initialization of CCS package... OK
Ready.

>cd "/home/meolic/est/est-2ed/data/automata"; source "example2.tcl"; cd "/home/meolic/est/est-
2ed/data"
Reading file: example2.ccs
 Process S ... OK

ACTL/ACTLW model checking on process S

EX{a?} true ==> TRUE
Witness automaton WC1S has been constructed.
Minimization of automaton WC1S... OK
PROCESS MIN_WC1S
Number of states: 2
Number of final states: 1
Number of transitions: 1

EX{a?} EX{a?} true ==> TRUE
Witness automaton WC2S has been constructed.
Minimization of automaton WC2S... OK
PROCESS MIN_WC2S
Number of states: 3
Number of final states: 1
Number of transitions: 2

EF EX{a?} true ==> TRUE
Witness automaton WC3S has been constructed.
Minimization of automaton WC3S... OK
PROCESS MIN_WC3S
Number of states: 3
Number of final states: 1
Number of transitions: 5

E[true {a?}U{b?} true] ==> TRUE
Witness automaton WC4S has been constructed.
Minimization of automaton WC4S... OK
PROCESS MIN_WC4S
Number of states: 4
Number of final states: 1
Number of transitions: 5

AX{a?} true ==> FALSE

Counterexample automaton WC5S has been constructed.
Minimization of automaton WC5S... OK
PROCESS MIN_WC5S
Number of states: 2
Number of final states: 1
Number of transitions: 2

AX{TAU} AX{a?} true ==> FALSE
Counterexample automaton WC6S has been constructed.
Minimization of automaton WC6S... OK
PROCESS MIN_WC6S
Number of states: 2
Number of final states: 1
Number of transitions: 2

AG AX{a?} true ==> FALSE
Counterexample automaton WC7S has been constructed.
Minimization of automaton WC7S... OK
PROCESS MIN_WC7S
Number of states: 4
Number of final states: 1
Number of transitions: 7

A[true {a?}U{b?} true] ==> FALSE
Counterexample automaton WC8S has been constructed.
Minimization of automaton WC8S... OK
PROCESS MIN_WC8S
Number of states: 3
Number of final states: 1
Number of transitions: 4

PROCESS S
INITIAL STATE s9
s9 = a? . s9 + TAU . s3 + a? . s6 + c? . NIL
s3 = a? . s9
s6 = b? . NIL

PROCESS WC1S
INITIAL STATE wc1
FINAL STATES wc2 wc3
wc1 = a? . wc2 + a? . wc3

PROCESS MIN_WC1S
INITIAL STATE s1
FINAL STATES s2
s1 = a? . s2

PROCESS WC2S
INITIAL STATE wc1
FINAL STATES wc3 wc4
wc1 = a? . wc2
wc2 = a? . wc3 + a? . wc4

PROCESS MIN_WC2S
INITIAL STATE s1
FINAL STATES s3
s1 = a? . s4
s4 = a? . s3

PROCESS WC3S
INITIAL STATE wc1
FINAL STATES wc2 wc3
wc1 = a? . wc2 + a? . wc3 + TAU . wc4 + a? . wc1
wc4 = a? . wc2 + a? . wc1

PROCESS MIN_WC3S
INITIAL STATE s1
FINAL STATES s3
s1 = TAU . s4 + a? . s1 + a? . s3
s4 = a? . s1 + a? . s3

PROCESS WC4S
INITIAL STATE wc1
FINAL STATES wc4
wc1 = TAU . wc2 + a? . wc1 + a? . wc3

wc2 = a? . wc1
wc3 = b? . wc4

PROCESS MIN_WC4S
INITIAL STATE s1
FINAL STATES s5
s1 = TAU . s4 + a? . s1 + a? . s3
s4 = a? . s1
s3 = b? . s5

PROCESS WC5S
INITIAL STATE wc1
FINAL STATES wc2 wc3
wc1 = TAU . wc2 + c? . wc3

PROCESS MIN_WC5S
INITIAL STATE s1
FINAL STATES s2
s1 = TAU . s2 + c? . s2

PROCESS WC6S
INITIAL STATE wc1
FINAL STATES wc2 wc3 wc4
wc1 = c? . wc2 + a? . wc3 + a? . wc4

PROCESS MIN_WC6S
INITIAL STATE s1
FINAL STATES s3
s1 = a? . s3 + c? . s3

PROCESS WC7S
INITIAL STATE wc1
FINAL STATES wc2 wc3 wc5 wc7
wc1 = TAU . wc2 + c? . wc3 + TAU . wc4 + c? . wc5 + a? . wc1 + a? . wc6
wc4 = a? . wc1
wc6 = b? . wc7

PROCESS MIN_WC7S
INITIAL STATE s1
FINAL STATES s2
s1 = TAU . s2 + TAU . s5 + a? . s1 + a? . s4 + c? . s2
s5 = a? . s1
s4 = b? . s2

PROCESS WC8S
INITIAL STATE wc1
FINAL STATES wc3
wc1 = TAU . wc2 + a? . wc1 + c? . wc3
wc2 = a? . wc1

PROCESS MIN_WC8S
INITIAL STATE s1
FINAL STATES s2
s1 = TAU . s3 + a? . s1 + c? . s2
s3 = a? . s1

Files complex.dat, complex.actl, and complex.tcl are a complex example of ACTL
model checking. For the given formula, witness and counterexample automaton
cannot be created in any of the given processes.

SORT sortAutomata a,b,c,d,e,f,g,h,k

PROCESS Mod1
SORT sortAutomata
INITIAL STATE s0
TRANSITIONS
s0 = h?.s1
s0 = g?.s2

s1 = a!.s3
s1 = b!.s4
s2 = a!.s4
s2 = c!.s6
s3 = b!.s6
s4 = b!.s5
s5 = c!.s7
s5 = f?.s4
s6 = d!.s8
s6 = f?.s3
s7 = d!.s9
s9 = e!.s8

/*
add s8 = c!.s8
*/

PROCESS Mod2
SORT sortAutomata
INITIAL STATE s0
TRANSITIONS
s0 = h?.s1
s0 = g?.s2
s1 = a!.s3
s1 = b!.s4
s2 = a!.s4
s2 = c!.s6
s3 = b!.s6
s4 = b!.s5
s5 = c!.s7
s5 = f?.s4
s6 = d!.s8
s6 = f?.s3
s7 = d!.s9
s9 = e!.s8
s8 = c!.s8

/*
add s8 = c!.s8
remove s5 = f?.s4
*/

PROCESS Mod3
SORT sortAutomata
INITIAL STATE s0
TRANSITIONS
s0 = h?.s1
s0 = g?.s2
s1 = a!.s3
s1 = b!.s4

s2 = a!.s4
s2 = c!.s6
s3 = b!.s6
s4 = b!.s5
s5 = c!.s7
s6 = d!.s8
s6 = f?.s3
s7 = d!.s9
s9 = e!.s8
s8 = c!.s8

/*
add s8 = c!.s8
remove s5 = f?.s4
remove s6 = f?.s3
*/

PROCESS Mod4
SORT sortAutomata
INITIAL STATE s0
TRANSITIONS
s0 = h?.s1
s0 = g?.s2
s1 = a!.s3
s1 = b!.s4
s2 = a!.s4
s2 = c!.s6
s3 = b!.s6
s4 = b!.s5
s5 = c!.s7
s6 = d!.s8
s7 = d!.s9
s9 = e!.s8
s8 = c!.s8

Here is the log from EST:

Efficient Symbolic Tools, 2nd Edition, Copyright (C) 2003-2013 UM-FERI
This is free software, and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute EST; type "license" for details.

Running on i686 (Linux, 3.2.0-38-generic-pae) with tcl 8.5.11 and tk 8.5.11.

Initialization of GUI package... OK
Initialization of BDD package... OK
Initialization of Process_Algebra package... OK
Initialization of Versis package... OK
Initialization of Model checking package... OK
Initialization of Strucval package... OK
Initialization of CCS package... OK
Ready.

>cd "/home/meolic/est/est-2ed/data/automata"; source "complex.tcl"; cd "/home/meolic/est/est-
2ed/data"
Reading file: complex.dat
 Sort sortAutomata ... OK

 Process Mod1 ... OK
 Process Mod2 ... OK
 Process Mod3 ... OK
 Process Mod4 ... OK

ACTL/ACTLW model checking on process Mod1

E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{a!} E[true {(NOT a!) AND (NOT
b!) AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{b!} ((E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND
(NOT d!) AND (NOT e!)}U{e!} true]) OR (EG ((EX{c!} true) IMPL (EX{c!} E[true {(NOT a!) AND (NOT b!)
AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{d!} E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND (NOT d!)
AND (NOT e!)}U{e! OR c!} true]]))))]] ==> TRUE
Witness: (g?)(a!)(b!)(f?)(b!)
Witness automaton cannot be constructed.

ACTL/ACTLW model checking on process Mod2

E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{a!} E[true {(NOT a!) AND (NOT
b!) AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{b!} ((E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND
(NOT d!) AND (NOT e!)}U{e!} true]) OR (EG ((EX{c!} true) IMPL (EX{c!} E[true {(NOT a!) AND (NOT b!)
AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{d!} E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND (NOT d!)
AND (NOT e!)}U{e! OR c!} true]]))))]] ==> TRUE
Witness: (g?)(a!)(b!)(f?)(b!)
Witness automaton cannot be constructed.

ACTL/ACTLW model checking on process Mod3

E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{a!} E[true {(NOT a!) AND (NOT
b!) AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{b!} ((E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND
(NOT d!) AND (NOT e!)}U{e!} true]) OR (EG ((EX{c!} true) IMPL (EX{c!} E[true {(NOT a!) AND (NOT b!)
AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{d!} E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND (NOT d!)
AND (NOT e!)}U{e! OR c!} true]]))))]] ==> TRUE
Witness: (h?)(a!)(b!)(f?)(b!)
Witness automaton cannot be constructed.

ACTL/ACTLW model checking on process Mod4

E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{a!} E[true {(NOT a!) AND (NOT
b!) AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{b!} ((E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND
(NOT d!) AND (NOT e!)}U{e!} true]) OR (EG ((EX{c!} true) IMPL (EX{c!} E[true {(NOT a!) AND (NOT b!)
AND (NOT c!) AND (NOT d!) AND (NOT e!)}U{d!} E[true {(NOT a!) AND (NOT b!) AND (NOT c!) AND (NOT d!)
AND (NOT e!)}U{e! OR c!} true]]))))]] ==> FALSE
Counterexample not generated.
Counterexample automaton cannot be constructed.

