
TenLander
A C=64 game written in 2020 in just 
ten lines of code and in less than

800 characters

100% pure BASIC V2

Rosario De Chiara

rosario@dechiara.eu

www.dechiara.eu

mailto:rosario@dechiara.eu
http://www.dechiara.eu/


TenLander:
Background history

You feel your brain power reducing any
minute because of the cosmic rays, you 
just have the computational power of 
ten lines of code to understand what is
happening:
your ship is not strong enough to 
protect your body; there is so little
fuel to handle the landing, luckily you 
can see a shiny landing platform in the 
dark…

It is matter of seconds, ground is
running fast toward you…



TenLander:
Controls

Use joystick in port 2 to control the 
ship

Left and right to control the ship 
without using fuel

Up and down to use thrusters and to 
decellerate/accellerate vertically

Fire button to go to next level on 
successeful landing



TenLander:
Code Description

4j=q-pE(56320):u=(jaN2)/2-(jaN1):c=(jaN8)/8-(jaN4)/4:pO54296,0:pOv+37,aB(u*f)
5y=y+w:w=w+g+u*.5*-(f>0):x=x+h:h=h+c/2:b=-(x>q):ifutHf=f+(f>0):pO54296,-(f>0)*9 
6pOv+16,b:pOv,(x-q*b)*(1+(x<0))+(q+x)*(1+(x=>0)):pOv+1,y:sx=int((x-16)/8)
7sy=int((y-45)/8):l=pE(1024+sx+sy*40):ifl=98aNw<1.5tH?"landed":wA56320,16,16:gO1 
8pO781,0:sY59903:?"{home}";cH(30+2*(w>1.5));"v:";int(w*100);cH(30+2*(f<5));"f:";f
9on-(l=32)gO4:pOv+33,2:pO2040,10:eN:dA40,,,131,,,175,,,191,,,175,,,60,,,195,,,65

0v=53248:fOz=0to21:rEj:pO832+z,j:nEz:pO2040,13:g=0.1:q=255:pOv+32,0:pOv+33,0

1pOv+21,3:pOv+39,7:pOv+40,1:w=0:h=0:x=150:y=80:f=20:pOv+16,0:pOv+39,9:pOv+28,1 
2pOv+38,8:?"{clear}{down*9}":d$(0)="{gray}{sh asterisk}":d$(1)="{yellow}{cm 
i}":d$(2)="{gray}K{up}{left}U":d$(3)="{dark gray}I{down}{left}J"
3d$(4)="{gray}{cm x}{up}{left}U":d$(5)="{dark gray}{cm 
s}{down}{left}J":d$(6)=d$(1):fOi=1to40:?d$(rN(1)*6);:nE

Level initialization

Setup and constants

Game loop



TenLander:
Level initialization

print "{clear}{down*9}" : 
d$(0) = "{gray}{sh asterisk}" : 
d$(1) = "{yellow}{cm i}" : 
d$(2) = "{gray}K{up}{left}U" : 
d$(3) = "{dark gray}I{down}{left}J" : 
d$(4) = "{gray}{cm x}{up}{left}U" : 
d$(5) = "{dark gray}{cm s}{down}{left}J" : 
d$(6) = d$(1) : 
for i = 1 to 40 : print d$(rnd (1) * 6); : next

This is the piece of code in charge of drawing the planet 
landscape. The d$ array contains the pieces of the mountain 
profile. The for loop just draw 40 of this pieces. 

In each piece there is also embedded the shading color.

Please note how the probability of generating a landing 
platform d$(1) is doubled by assigning d$(1) to d$(6)



TenLander:
Game loop 1

j = q - peek (56320) : 
u = (j and 2) / 2 - (j and 1) : 
c = (j and 8) / 8 - (j and 4) / 4 

y = y + w : 
w = w + g + u * .5 * - (f > 0) : 
x = x + h : 
h = h + c / 2 : 

This is where the joystick position is read and the 
increments for the horizontal and vertical axis are assigned

Please note how the vertical velocity (w) is updated by 
applying the gravity g and the current acceleration from the 
engine u, only if there is still fuel. 



TenLander:
Game loop 2

b = - (x > q) : if u then f = f + (f > 0)
poke v + 16,b :
poke v,
(x - q * b) * (1 + (x < 0)) + (q + x) * (1 + (x = > 0)) : 

poke v + 1,y : 

This piece of code contains the logic to update sprite 
position. It is worth noting how it takes care of the x>255 
condition by applying all the modifications needed to pass 
the correct x value to the poke. At the core of the logic 
there is the variable b which also used to enable the bit in 
v+16



TenLander:
Game loop 3

sx = int ((x - 16) / 8) 
sy = int ((y - 45) / 8) : 
l = peek (1024 + sx + sy * 40) : 
if l = 98 and w < 1.5 then print "landed" : wait 
56320,16,16 : goto 1
on - (l = 32) goto 4 : poke v + 33,2 : poke 2040,10 : end 

This is the complex logic that understands what is happening 
under the legs of the ship. The two variables sx and sy are 
the screen coordinates of the character under the ship and 
in l we read it right from the screen. 

If l is 98 means we have happily landed but only if velocity 
(the variable v) is low enough: if so we wait for the 
trigger to go to the next level

The on..goto is used as a poor man solution for if..then..else
if l=32 then we are still flying, if not then we just crash 
the sprite and finish the game



TenLander:
Constants and variables

b True when sprite x coord 255
c Horizontal joystick axis increment
f Fuel
g Gravity acceleration
h Horizontal velocity
i Index for a for-loop
j Keeps what is read from data
l Contains the character under the ship
q Just the 255 constant
sx

Screen coordinates of the sprite
sy
u Vertical joystick axis increment
v Just the 53248 constant
w Vertical velocity
x
Sprite coordinates

y
z Index for a for-loop



The end

Rosario De Chiara

rosario@dechiara.eu

www.dechiara.eu

mailto:rosario@dechiara.eu
http://www.dechiara.eu/

