. ==============
. WIZARD OF WASD
. ==============
. A submission for the 2020 BASIC 10-liner competition
. By Randy Gill (randygill at yahoo dot com)
. Designed for (integer) FastBasic v4.0, for Atari 8-bit computers
. Dimension arrays to hold expanded game data, packed source data, inventory
DIM W(1520), D$(5), V(51)

. Initialize address pointer variables
Y = (ADR(W) / 512 + 1) * 512 :. start address of custom glyphs
K = Y + 512 :. start address of entity catalog
M = K + 260 :. start address of map data (skipping 52 entities * 5 bytes)
. Copy character set into RAM for modification
MOVE $E000, Y, 512

. =================================
. EXPAND COMPRESSED GAME DATA
. =================================
. Extract data for custom character glyphs, entity attributes, and game map to
. available memory. Game data is packed in strings with each character repre-
. senting 6 bits (a "sextet"). Data is decoded/expanded as a series of variable-
. length chunks, each prefixed by a two-sextet "header" defining encoding mode
. number (3 bits) and length (9 bits)
. Encoding mode numbers
. ---------------------
. 7 = Octet-Stream: Encodes 3 bytes in 4 printable chars; like Base64 but
. easier to decode in BASIC (no translation table or 32-bit ints required)
. 4 = Sextet-Stream: Packs a 6-bit value into each char; for values < 64, e.g
. table of entity relationships
. 3 = Triad-Stream: Packs two 3-bit values (< 8) into each char; useful for
. base map (having only common entities, 0-7)
. 2 = Sextet-Run: encodes an sextet that repeats a specified # of times (6-bit
. RLE)
. 1 = Octet-Run: encodes an octet that repeats a specified # of times (8-bit
. RLE)
. Modes that aren't true encodings
. --------------------------------
. 5 = Header: indicates chunk header is being processed
. 0 = Gap: advances destination pointer by specified count; used to skip char
. glyphs not being redefined
. The encoding mode numbers (variable E) were carefully chosen so that whether
. the encoding uses a holding sextet, the cycle of when holding sextets appear,
. and whether the encoding is a "run" (vs. a "stream") could be calculated from
. it. Respectively: ABS(E-3)>1, ABS(E-3+(E=3)), and E<3
. Initialize vars...
Q = Y :. data destination pointer (set to starting address of custom char glyphs)
E = 5 :. encoding mode (initialized to "header" encoding, which prefaces a chunk)
R = 1 :. remaining bytes in current chunk or header
I = 0 :. index of current element in source data string array $D()
P = 0 :. pointer to source data character (RAM addr within $D(I))
L = 0 :. limit (ending) RAM address of current source data element $D(I)
C = 0 :. count within decoding cycle (significant for header and octet encodings)
. Show indicator that data is being loaded
? "Load";

. D$(n) holds compressed data for custom glyphs, game entities, and the game map
D$(0)="08?hoooWo33;_G[@1@`@0842@1h\ZZZZjZZnThlj_ooj>Zn0In1N4P`P0P371>lHlX40oooWo333?33H`LHo1nlH5V@DhbkoOofVdRbj3hR

WJ_?P5lZ8088888IS=fH14RdN5hUU"
D$(1)="6Ioi=mm00HHl1JHTEVVgeg4dOoFl8@7@=00P0D>OP?70=Pl6d<io1n183o7P00H0@l0nQn0X5hX`0842T1nmNIWnDZDn00lHDlnJ1nlH@78

FAjFMOZJ9^90PGL;0035LF05:L00Lc62L00;<E0?L21<9d56_h097W0?7<03751?7M1?7`1<?P18?226_O2;7d2;7f2?M[53M05>_l46_b50_254_T

5=_j45_Z53_457_\57Mn3;M"
D$(2)="549L46?Mm5;MB53M;57Ml63600;5;504006JN442C10N0043V58;<34PG62=@63OV51KS6;1d249`5;k=388>1770o0o01o20o39S\en7<H

m@mCmMmNmOmDm?m>m8mBmAm9m=mFmEmHmGmJmImLmKm:m;m<mQmPmSmRn0n0n2n0n2n0n0n0[TT0U0V0WAXYY0ZV:F43999TB42A43;AB9BB42@43=

9B99B]42>43>9A:=AZU2=43"
D$(3)="B99Z]AZ]9Q2;43AAZ=9B]E942943B9Z]99Z]:Q2943@AZ=Q9]E:2;43?AZ=Q]EB12<43>AZ:T]BR2<43C9AB9TERT:42843C9B:9QDTAB42

843CABY=9T<BB42843A9:]]99<>22:43B99]]=9<9Q2943C99]]=Q<9942843B9<YY]9T9Q2943>9T99A:Q2=43?9T<9BB942<4369Q<2627401110

42;4369QA2627501150542;"
D$(4)="43B99BBB9]=Q2943699A26136]=Q2:43@999T99=Q:F47106:E671002807306062703Cfff``ff`f0276710026671002603Y6666006ff

f`ff`````f`02663L00`0````0``ff62963;````f02663^``00`0``00`ff666f66f6f62863:00```2707306062763C`ff`f``f`028671002:0

3;600606:F63@0`0`0`0`2;"
D$(5)="63`0`0`0`0`f0`ff60606060f612663E0`0`0`0`f802663F0`0`0`0`f0`:c63;0`fhh02>63a```f00`f99aff606fn0hfVLT62963B`f

07`fTSd2663E00f600f>9962G6710O:F600"
REPEAT

 IF P = L :. source data element ran dry (or 1st time through)
 P = ADR(D$(I)) + 1 :. calculate source data pointer
 L = P + LEN(D$(I)) :. ending address of source data array element
 INC I :. next time it runs dry, it will use next element of D$
 ENDIF

 S = PEEK(P) - 48 :. set current sextet, subtracting the character offset
 IF C = 0 AND ABS(E - 3) > 1 :. first byte of a multi-byte encoding becomes the "holding" sextet
 H = S :. set the holding sextet
 ELIF E = 5 :. "header" encoding; two-character sequence that defines following chunk
 ? "."; :. print periods to show it is busy working
 E = H & 7 :. get the next encoding id number from 3 low bits of holding sextet
 R = H & 56 * 8 + S :. high 3 bits from the holding sextet plus 6 from current form (9-bit) chunk length
 H = 0 :. clear holding sextet for next use
 C = -1 :. set cycle count so it will be 0 next iteration (after incrementing)
 IF E = 0 :. "gap" encoding
 Q = Q + R :. advance the destination pointer Q
 E = 5 :. back to header encoding for next chunk
 ENDIF

 ELSE

 IF E < 3 :. sextet-run or octet-run encoding
 MSET Q, R, H * 64 + S :. fill R bytes starting at Q. Note that for sextet, H will be 0
 Q = Q + R :. skip over range it just filled
 R = 1 :. set to 1 because < 1 would signal prog to stop decoding altogether
 ELSE

 IF E = 3 :. triad-stream encoding
 POKE Q, S & 7 :. put low-order triad at destination address
 IF R > 1 :. if there are remaining chars in the chunk
 INC Q

 POKE Q, S & 56 / 8 :. put high-order triad at (next) destination address
 DEC R :. decrement for high-order triad (decrement for low-order happens 8 lines down)
 ENDIF

 ELSE :. sextet-stream or octet-stream encoding
 POKE Q, H & 3 * 64 + S :. for octet, bottom 2 bits of holding sextet become top bits of destination byte
 H = H / 4 :. shift bits of the holding sextet, in preparation to decode next byte
 ENDIF

 INC Q :. increment to next destination address
 ENDIF

 DEC R :. decrement remaining chars (considering it just processed one)
 IF R < 1 :. done with this chunk, get ready for next
 E = 5 :. set encoding to header encoding
 C = -1 :. so cycle count will become 0 once incremented
 R = 1 :. set to 1 because < 1 would signal prog to stop decoding altogether
 ENDIF

 ENDIF

 C = (C + 1) MOD ABS(E - 3 + (E = 3)) :. increment cycle count
 INC P :. point to next character in data source string D$(I)
UNTIL R < 1 :. chunk with R = 0 tells decoder it is done
. =====================
. GAME REPLAY LOOP
. =====================
. Now that one-time setup is complete, perform initialization for each game
. Main concepts of game code
. --------------------------
. "Map" contains entire world (surface and underground); conceptually 27 x 65,
. but implemented as one-dimensional array of 1755 cells
. Each map cell contains id of an "entity"
. Entity is anything that can appear on the map (except player) and/or in
. inventory
. Entities are all one of five types, some common (can appear in multiple map
. cells), some unique (can only be in one map cell):
. - Passible (common): open areas, grass, forest, etc.
. - Impassible (common): walls, mountains, water
. - Item (unique): taken into inventory when stepped on
. - Obstacle (unique): needs appropriate item to defeat
. - Link (unique): warps to another location on map
. "Entity catalog" has 4 attributes of each of the 52 entities:
. - "Requirement" entity id: for obstacles, this is entity id of item that
. defeats it; impassibles have their own entity id (which can never be
. in inventory); other types identified by pseudo-entities 61 (link),
. 62 (item), or 63 (passable)
. - "Transition" entity id: entity that replaces this one when obstacle is
. defeated or item is taken; for links this is entity id it links to
. - Appearance (ATASCII char code): in graphics 18 implies glyph and color
. - Position (cell# on map): where initially placed, for unique entities only
REPEAT

 . Loop through entity ids, reset the inventory of them to empty, and copy the
 . entity ids to their default location on the map; start at 8 because 0-7 are
 . the common entities that are not inventoried, and are already on the map
 FOR I = 8 TO 51

 V(I) = 0

 POKE M + DPEEK(K + 3 * I + 1), I

 NEXT

 . Configure graphics
 GRAPHICS 18 :. Text mode having 20 cols x 12 rows, with 4 colors + black background
 POKE 756, Y / 256 :. Tells Atari OS to use program's custom character set
 Z = DPEEK(88) :. Start address of screen RAM
 SETCOLOR 3,0,15 :. Make color 3 white, defaults ok for others (blue, green, burnt orange)
 . Display game title and draw frame around map view
 POSITION 7,0

 ? #6,"$D7$C9DAC1$D2$C4" :. "WIZARD"
 POSITION 8,1

 ? #6,"CFC6 $F7" :. "OF W"
 POSITION 10,2

 ? #6,"$E1$F3$E4" :. " ASD"
 COLOR 63 :. Skull glyph, in orange color
 PLOT 0,3

 DRAWTO 8,3

 DRAWTO 8,11

 DRAWTO 0,11

 DRAWTO 0,3

 P = 464 :. Player position on map
 T = 999 :. Time (moves) remaining
 . ========================
 . MAIN GAMEPLAY LOOP
 . ========================
 REPEAT

 EXEC M :. Display map
 POSITION 10,4

 ? #6,"$D4";T;" " :. Display time remaining
 GET O :. Get movement key
 . Calculate new "trial" position N, using algebraic expression instead of
 . chained IFs for brevity. In (AT)ASCII: W=87 A=65 S=83 D=68
 N = P + (O = 68) - (O = 65) + 27 * ((O = 83) - (O = 87))

 E = PEEK(M + N) :. Look up entity at new map position
 A = K + 156 + 2 * E :. Calculate address of entity's "requirement entity id" in entity catalog
 R = PEEK(A) :. Get requirement entity id
 IF N - P AND E - R :. If new pos different from existing (moving) and destination not impassable
 . (Note above uses "-" as shorter alternative to "<>")
 X = PEEK(A + 1) :. Get entity's "transition entity id", which follows requirement id
 IF R < 61 :. Entity has an inventory requirement, hence an obstacle (or impassable)
 IF V(R) :. If required item is in inventory
 POKE M + N, R :. Show the item (briefly), indicating it is working to defeat obstacle
 V(R) = 0 :. Remove item from inventory
 POKE Z + 154 + R, 0 :. Clear item from inventory display
 EXEC M :. Refresh map display
 SI = 6 :. Sound effect step increment
 SD = 0 :. Sound effect step duration
 EXEC S :. Play sound effect
 POKE M + N, X :. Replace map cell with the transition-to entity
 O = 27 * (E = 45) :. Set exit indicator if winning condition met (i.e. defeated obstacle is wizard)
 ENDIF

 ELSE :. This is an unobstructed entity (passable, item, or link)
 P = N :. Move player to destination cell
 IF R = 62 :. This is an "item" -- something that can be taken
 V(E) = 1 :. Set slot in inventory array corresponding to this item to true
 POKE Z + 154 + E, PEEK(K + E * 3) :. Look up glyph for item and show on screen
 POKE M + P, X :. Replace item on map with its transition-to entity
 ELIF R = 61 :. This is a "link" (portal, entryway, stairs, ship, etc.)
 EXEC M :. refresh map to show user on top of link cell, before they teleport away
 PAUSE 9

 P = DPEEK(K + 3 * X + 1) :. Look up map address of the destination link, and set position to it
 ENDIF

 DEC T :. Decrement timer
 O = 27 * (T < 0) :. Sets O to 27 (exit indicator) if out of time
 ENDIF

 ENDIF

 UNTIL O = 27 :. User pressed Escape, or game was won or lost
 . Play the final sound. If E is 45 (Blue Wizard) then player won, and the
 . sound increment will be set to (positive) 6, causing the fanfare sound to
 . ascend in pitch. Otherwise (user lost by running out of time or pressing
 . Esc) sound increment will be -6, causing descending fanfare. Either way
 . the duration of each note will be 12 "jiffies"
 SI = (E = 45) * 12 - 6

 SD = 12

 EXEC S :. Play sound effect
 . Show user they can start new game by typing "N"
 POSITION 10,6

 ? #6,"EEC5$D7"; :. "New"
 GET O

UNTIL O - 78 :. 78 is (AT)ASCII for "N"
END

. ===========================
. MAP DISPLAY PROCEDURE
. ===========================
. Refreshes the display window of the world map
. Parameters:
. K - Starting address of entity catalog in RAM
. M - Starting address of world map in RAM
. P - Current player position (cell #) on map
. Z - Starting address of screen (display) RAM
PROC M

 FOR R = 0 TO 6 :. map display is 7 rows tall
 FOR C = 0 TO 6 :. map display is 7 columns wide
 G = 206 :. character code for player gylph in color white
 IF C - 3 OR R - 3 :. this is not spot where the player glyph always appears, so get map glyph instead
 G = PEEK(K + PEEK(M + P - 84 + 27 * R + C) * 3) :. look up entity in map cell, then glyph for entity
 ENDIF

 POKE Z + 81 + 20 * R + C, G :. put glyph on screen
 NEXT

 NEXT

ENDPROC

. ============================
. SOUND EFFECT PROCEDURE
. ============================
. Plays an ascending or descending sound.
. Parameters:
. SI - Sound increment; amount pitch rises (or falls if negative) at each step
. SD - Sound duration; time each step is played, in "jiffies"
PROC S

 J = 80

 FOR I = 0 TO 8

 J = J - SI

 SOUND 2,J,10,6

 PAUSE SD

 NEXT I

 SOUND

ENDPROC
