

- 1 -

COVIDBREAKER

by Davide Fichera (Naufr4g0)

2020 BASIC 10-Liner contest

(category: EXTREM-256)

SPECS:

Hardware: Commodore 64

Language: Standard BASIC V2

OBJECTIVE:

This is a classic game mainly inspired by JawBreaker, but with COVID viruses as enemies.

You can move your denture (main character) inside a maze made up of 5 tunnels one upon another. To

pass from one tunnel to another you have to use the moving holes inside the walls.

The objective of the game is to clear the screen by eating all dots (65 per level) avoiding the viruses on the

screen!

The speed of the enemies increases as the game progresses.

When you lost all your dentures the game ends and you have to press the fire button to play again.

Controls:

Use Joystick in port #2

CODE DESCRIPTION:

In this document I report first the most important variables used in the game and later the whole game

code rewritten by separating the individual instructions and arranging them on different lines.

Inside code explanation I voluntarily removed the DATA statements, which make the writing too heavy, but

I brought them further down at the end of the document.

Important Variables:

 x = Player X-Coord

 y = Player Y-Coord

 p = Memory location of the char under the Player sprite (1024..2023)

 hx(i) = X-coord of the i-th hole in the wall

 hy(i) = Y-coord of the i-th hole in the wall

 hd(i) = Speed of the i-th hole in the wall

 mx(i) = X-Coord of the i-th enemy

 my(i) = Y-Coord of the i-th enemy

 mr(i) = Row position of the i-th enemy [rows are numbered from 0 (top) to 4 (bottom)]

 md(i) = Speed of the i-th enemy

 b(i) = bit value of the i-th enemy (vic sprites #1 - #4)

Game screenshot

GAME CODE

- 2 -

0

def fnr(x) = int(rnd(1)*x)

py = rnd(-ti)

dim x,y,p,

hx(3),hy(3),hd(3),

mx(3),my(3),md(3),mr(3)

py = 214

v = 53248: v2 = v+2: v9 = v+16: vc = v+30

jo = 56320: jl = 4: jr = 8: jv = 3: jd = 2

yj = 32

p0 = 2040: pm = 2041

sb = 248: sm = 250

d8 = .125: f = 255

b(0) = 2: b(1) = 4: b(2) = 8: b(3) = 16

si = 54296

ax = 23: bx = 328

1

ml = 342

ei = 80

do = 46

li = 3

bs = 8

lv = 1

hr$(0) = "{reverse on}{blue}{cm y*2}"

hl$(1) = "{reverse on}{blue}{cm

y*2}{reverse off}"

poke v + 32, 0: poke v + 33, 0

for i = 0 to 255

read a

poke 15872 + i, a

next

poke p0, sb

poke v+37, 9: poke v+38, 1

poke v+39, 2

poke v, x: poke v+1, y

poke v+28, 63

gosub 7

2

i = i+1 and 3

j = not peek(jo)

vx = (jandjr) - (jandjl)*2

l= x+vx>=ax and x+vx<=bx

x = x – vx*l

poke v, x and f

poke v9, peek(v9) and 254 or -(x>f)

p = p - sgn(vx)*l

if j and jv then

if peek(p-ei+ei*(jandjd)) = 32 then

vy = -yj + (jandjd)*yj

y = y + vy

poke v+1, y

p = p + sgn(vy)*160

 INIT GAME

- Define a function to extract a

random number from 0 to x-1

- Init random number generator

- Declare x,y,p as fast access vars

- Allocate space in array memory for

arrays containing monsters and holes

in the wall physics

- Init some constants:

- VIC consts

- Joystick control consts

- delta-Y between map rows (in pixels)

- Player sprite&first enemy sprite

pointers

- 1/8 value const, max value of a byte

- value of monster bits

- SID const for Volume control

- X-coord limits for Player

- X-coord right limit for enemies

- A useful const

- Set dot screen code to 46 (.)

- Init player Lives

- Minimum base speed for enemies

- Init Level number

- Strings needed for moving holes

printing purposes

- Set screen border and background

screen colors to 0 (black)

- Load sprites DATA into memory

- Init Player Sprite pointer

- Init auxiliary colors for multicolor

sprites

- Init Player color

- Move sprite to starting position

- Set all sprites to multicolor mode

- GO SUBroutine 7 (init level)

MAIN GAME LOOP

- Cycle ‘i’ counter var in range 0..3

- Read Joy port#2 (reverse bits)

- Calc player X-speed according to joy

position

- Check if jaws inside screen limit

- Change player X-coord only if it’s

inside screen limits

- Move player sprite

- Set 9th bit of player X-coord

according to x var value

- move the pointer to char under

sprite

- Execute following instructions only

if joy move in vertical direction

- Execute following instructions only

if there’s an open hole above or

below the player

- Move player sprite on Y-axis

GAME CODE

- 3 -

3

If peek(p) = do then

poke p, yj

poke si, 15 : poke si, 0

sc = sc + 10

de = de + 1

print "{home}{reverse off}{green}"

tab(7) sc

if de = 65 then

de = 0

lv = lv + 1

bs = bs + 2

gosub 7

goto 2

4

poke pm+i, sm + (rand1)

poke p0, sb + (r*2and1)

poke py, hy(i) : print

hd= -(hd(i) > .)

print tab(hx(i)) hl$(hd) " " hr$(hd);

hx(i) = hx(i) + hd(i)

if hx(i)>33 or hx(i)<. then

hd(i) = -hd(i) : hx(i) = hx(i) + hd(i)

5

mx(i) = mx(i) + md(i)

poke v2 + i*2, mx(i) and f

poke v9, peek(v9) and f-b(i) or

(b(i)*-(mx(i)>f))

if mx(i)<. or mx(i)>ml then

md(i) = abs(md(i))*sgn(rnd(1)-.5)

a = mr(i)

mr(i) = hm

my(i) = 77 + 32*hm

hm = a

mx(i) = -ml*(md(i)<0)

poke v2+1+i*2, my(i)

du = peek(vc)

6

r = r + .25

dc = peek(vc)

on -((dcand1)=.) goto2

li = li -1

gosub 8

on -(li>0) goto 2

poke v+21, 0

CHECK FOR DOTS

- Execute following instructions only

if char under player is a dot

- clear char under sprite

- Play a simple sound

- Add 10 to score

- Keep track of eaten dots

- Update score on the HUD

- Check if all dots were eaten

- Clear eaten dots counter

- Increase game level

- Increase base speed for enemies

- GO SUBroutine 7 (refresh level)

- GO TO 2 (main game loop)

UPDATE SPRITES ANIMS & HOLE POSITION

- Update enemy sprite (anim)

- Update player sprite (anim)

- Fast cursor moving to the row

corresponding to i-th hole

- hd = 0 if hole is moving left

 = 1 if hole is moving right

- Print hole in the i-th wall

- If the hole moves outside the screen

limits changes hole movement dir

UPDATE ENEMY POSITION

- Update enemy X-coord according to

its direction

- Update enemy X-coord on screen

- Update 9th bit of X-coord

- Check if enemy go outside screen

borders

- Change randomly the direction

- ‘a’ var was used to swap values

between hm and mr(i) vars

- Set new y-Coord for enemy

- Set new x-Coord according to dir

(all the way to the left or to the

right)

- Update Y-coord on screen

- Dummy variable to avoid double

collision detection

COLLISION DETECTION

- Increase variable for sprite anims

purposes

- Read hardware sprite collision reg.

- If player doesn’t collide go to the

begin of the main loop

- ELSE (LOST LIFE): decrease lives

- GO to SUBroutine 8 (refresh screen

avoiding dot initing)

- If lives>0 go to begin of main loop

- ELSE (GAME OVER): Disable all

sprites on screen

GAME CODE

- 4 -

poke py, 11: print

print tab(14) "{white}game over!"

wait jo, 127, 127

run

7

print "{blue}{clear}{white}";

for i = 0 to 4

poke py, i*4+3: print

for j = 0 to 12

print"{white} .";

next

next

8

poke v+21, 0

for i = 0 to 5

poke py, i*4+1: print

print "{blue}{reverse

on}{right}{delete}{cm

y*39}{left}{148}{cm y}{reverse off}";

next

for i = 0 to 3

hx(i) = 15

hy(i) = i*4 + 5

hd(i) = 4*((iand1)-.5)

mr(i) = i - (i>1)

md(i) =

bs*(int(rnd(1)*2)+1)*sgn(rnd(1)-.5)

9

my(i) = 77 + 32*mr(i)

mx(i) = -ml*(md(i)<0)

poke v+i*2+2, mx(i) and f

poke v+i*2+3, my(i)

poke pm+i, 250

next

poke v+21, 63

i = 3

x = 161

y = 141

p = 1522

poke v, x: poke v+1, y

du = peek(vc)

print "{home}{white} score:" tab(15)

 "dents:{green}" li; tab(28)

 "{white}level:{green}" lv

hm = 2

return

- Print “Game Over” at the center of

the screen

- Wait for Joy Fire to be pressed

- Restart game

INIT GAME SCREEN SUBROUTINE

- Clear scren

- A FOR loop that draws 5 rows of 13

dots each.

- INIT MONSTERS & PLAYER START

POSITIONS

- Disable all sprites

- A FOR loop that draws 6 walls

- FOR loop for enemies & holes init

- set hole x-coord to 15

- set hole y-coord

- set hole speed (alternates left and

right)

- set row indicator (2 row stay free

for player

- set enemy X-speed to random value

(1x or 2x base enemy speed)

- set enemy y-coord

- set enemy x-coord

- move sprite to X,Y

- set enemy sprite anim

- Enable all sprites

- set i to 3

- set player.X

- set player.Y

- set screen position of char under

player sprite

- Move player sprite to X,Y

- Dummy var to avoid unwanted

collision detection

- Print HUD infos

- init empty row (w/o enemies)

- Return from subroutine

- 5 -

SPRITES DATA

Here are the sprites DATA used in the game and arranged in groups of 9 bytes per line. Originally DATA are

placed at the end of some of the 10 lines of game code.

1000 REM JAWS #1

1010 DATA 0,0,0,0,0,0,2,170,160

1020 DATA 10,170,168,42,170,170,37,85,86

1030 DATA 21,247,213,60,243,207,60,0,15

1040 DATA 0,0,0,0,0,0,0,0,0

1050 DATA 0,0,0,60,243,207,29,247,221

1060 DATA 37,85,86,42,170,170,10,170,168

1070 DATA 2,170,160,0,0,0,0,0,0

1080 DATA 0

1090 REM JAWS #2

1100 DATA 0,0,0,0,0,0,0,0,0

1110 DATA 0,0,0,2,170,160,10,170,168

1120 DATA 42,170,170,37,85,86,21,247,213

1130 DATA 60,243,207,60,0,15,60,243,207

1140 DATA 21,247,213,37,85,86,42,170,170

1150 DATA 10,170,168,2,170,160,0,0,0

1160 DATA 0,0,0,0,0,0,0,0,0

1170 DATA 0

1180 REM COVID #1

1190 DATA 0,0,0,0,0,0,0,128,128

1200 DATA 8,34,8,2,34,32,32,170,130

1210 DATA 8,170,136,2,251,224,34,200,226

1220 DATA 10,170,168,2,170,160,10,42,40

1230 DATA 34,42,34,2,128,160,8,170,136

1240 DATA 32,170,130,2,34,32,8,34,8

1250 DATA 0,128,128,0,0,0,0,0,0

1260 DATA 0

1270 REM COVID #2

1280 DATA 0,0,0,0,0,0,0,34,0

1290 DATA 2,34,32,2,34,32,0,170,128

1300 DATA 40,170,138,2,251,224,2,59,32

1310 DATA 42,170,170,2,170,160,42,42,42

1320 DATA 2,0,32,2,128,160,40,170,138

1330 DATA 0,170,128,2,34,32,2,34,32

1340 DATA 0,34,0,0,0,0,0,0,0

1350 DATA 0

