
1

“VOTERS” for Commodore 64 – Category “PUR-80”

by Eugenio Rapella

At the beginning of the program, the screen of the Commodore 64 is randomly filled

with two symbols, "*" and ".", which represent two states, somehow "in conflict" (they

could be conservative/reformist; normal skin cell/altered cell; Bayern Munich

supporter/1860 Munich supporter – well, some years ago –… Virus/No Virus). For

each of the 1000 locations on the C64 screen (25 rows, 40 columns) the symbol is

chosen randomly (with a probability of 50% "*", with a probability of 50% "."). We

therefore start from a situation in which the two symbols are well mixed, both as

numerical consistency and as geographical disposition.

At this point the main cycle opens: an element of the grid, alpha, is chosen at random

(those of the first and last row, of the first and last column are excluded) and we count

how many asterisks are present among the four "neighbors", ie those located at north,

south, east, west. If the number of asterisks is greater than 2, the alpha symbol turns

into an "asterisk" (regardless of the original content), if it is less than 2 the alpha symbol

becomes a "dot" while if it is exactly 2 the content alpha remains unchanged. In other

words, the neighborhood situation affects alpha and causes alpha to assume the

"position" of the majority of its neighbors (for the alphas the edge locations have been

excluded so that each alpha has the four "neighbors").

Once the transformation is performed, the program restarts with the random choice of

a new alpha and a new, possible transformation. What happens in the long run? It is

clear that areas where everyone is of the same opinion remain stable because the alpha

fished in there maintain their state. In the "border" areas there are configurations that,

somehow, stabilize.

2

Here an example of output at the beginning, after 2 minutes, after 10 minutes:

3

Here is the code:

10 w=rnd(-ti):poke 53280,0:poke 53281,0:fort=0to999:h=46:if rnd(0)<.5 then h=42

20 poke 1024+t,h:poke 55296+t,1:next

30 ns=0:x=int(rnd(1)*38)+1:y=int(rnd(1)*23)+1:n=1024+x+40*y

40 if(peek(n-40)=42)then ns=ns+1

50 if(peek(n+40)=42)then ns=ns+1

60 if(peek(n-1)=42)then ns=ns+1

70 if(peek(n+1)=42)then ns=ns+1

80 if ns>2 then poke n,42

90 if ns<2 then poke n,46

100 goto 30

Lines 10, 20. Poke 53280,0: black background, Poke 53281,0: black border. The FOR-

NEXT cycle takes care of the 1000 screen locations of the C64: location 1024

corresponds to the upper left corner and is filled with a "point" (poke ..., 46) or with an

"asterisk" (poke…., 42), with probability ½, when t = 0, then it’s the turn of location

1025 when t = 1, and so on. We take advantage of the cycle to enter "white" as the

color associated with the location (in the C64, the color map of the screen fonts starts

at location 55296).

Line 30. After this preliminary operation, the program begins: ns is the variable that

contains the number of neighborhood asterisks; initially it is set equal to zero. Then we

want to create a random number which will be the number of the column of the location

chosen for the game, our alpha. The columns are 40 and are numbered from 0 to 39.

Since we want to avoid the first and last, we want x to be from 1 to 38. The rnd(1)

function provides a random, decimal number from 0 to 1: 0 included, 1 excluded:

0 ≤ rnd(1) < 1. Multiplying by 38, you get a decimal number between 0 and 38 with

38 excluded; taking the integer part int(rnd (1)*38) we have an integer from 0 to 37;

with the final "+ 1" we finally arrive at the random value from 1 to 38. Same idea for

the following instruction that provides a random value (y) from 1 to 23 that allows to

determine the alpha line excluding the first and the last (the 25 lines are numbered from

0 to 24).

Then the screen memory location corresponding to row x and column y is calculated,

this number that is assigned to variable n.

Lines 40-70. The four instructions operate in the same way: each one controls the

content of the location of one of the 4 "neighbors", if it is an asterisk the variable ns is

increased by one unit so that, at the end, ns contains the total number of asterisks among

the alfa neighbors, an integer between 0 and 4.

4

Lines 80-90. We are at the end, if ns exceeds 2, an asterisk is inserted in the alpha

location n (regardless of what was there at the time); if, on the other hand, the number

of asterisks of the neighbors is less than 2 (which means that the dots will be 3 or 4),

in n goes a dot (if ns = 2, the content of n remains unchanged).

Line 100. Let’s go back to line 30 for a new alpha.

The program does not have an “end” (it will have to be stopped manually); the C64

screen will show the evolution of the situation. The symbols that appear on the border

will never be changed, but will influence their neighbors.

