
FLOH

This is a game for the BASIC 10 Liner Contest 2020 based on MSX 1 platform. More about the
contest can be found here: https://gkanold.wixsite.com/homeputerium/kopie-von-2020

Game info
• Title: Floh (flea)
• Platform: MSX
• Author: Alexandre Lehmann Holzhey
• Language: MSX-BASIC 1.0
• Category: PUR-120

Files description
• README.md: This file, with general information about the game.
• FLOH.BAS: Source code of the game, in BASIC langauge.
• floh.png: Screenshot of the game.
• floh.dsk: Disk image with the game saved inside, for using with emulators.

The game
You are a flea (floh, in Deutsch) and need to keep yourself alive. Unfortunately, there is a water

https://gkanold.wixsite.com/homeputerium/kopie-von-2020

flooding ongoing and to stay safe it is necessary to keep jumping above the water level. If you stay
much time jumping without moving, you start to get tired and will also die. There is a food for the
flea at the end of each level, in order to keep going!

How to play
The flea keeps jumping all the time, you have just to move it to the right or to the left, using th
arrows keyboard keys (left or right). The moving is inertial, you control how much factor is added
to the movement. You can also reduce the movement, going to the oposite direction.

But be aware that the flea will jump less high at each time. If you stay too much time at the same
level, you got killed. Each level is a full moving from the left to the right or from the right to the
left. A new level will be rendered and the flea will be kept without movement, to make things easier.

There is no end, but each level will have smaller plataforms to jump. If you get killed, the game
restarts from first level.

Using an emulator
The game was developed on a Sharp Hotbit HB-8000 MSX 1 computer (manufactured at Brazil in
1985). You can use an emulator, i recommend the WebMSX one: https://webmsx.org/?
MACHINE=MSX1&DISK=https://github.com/holzhey/floh/raw/master/floh.dsk Just use the
provided URL and when ready type load "a:floh.bas". Could be necessary to enter a date in
order to boot the system, in this case just press the ENTER key.

Game logic

10 DEFINT A-Z:SCREEN 2,0,0:COLOR 5,0,0:W=0:FOR N=0 TO
7:READ V:VPOKE BASE(14)+N,V:NEXT N:V=16:X=14

• DEFINT A-Z declare all variables as integer, to make sure we run as fast as possible,
without decimals calculations.

• SCREEN 2,0,0 initialize the high resolution graphical mode (256 x 192 pixels, 16 colors),
adjust sprites to be small sizes with 8 x 8 pixels and disable key clicks.

• COLOR 5,0,0 sets the foreground color to 5 (dark blue), background and border colors to
0 (transparent).

• W=0 initialize our flow state control to indicate a left-to-right level flow (0=left-to-right,
1=right-to-left). This flow is used to check if the flea achieves the end of the level, so we
need to know which side it is.

• FOR N=0 TO 7:READ V we use a FOR loop to read all the 8 values that will compound
the sprite image bitmap.

• VPOKE BASE(14)+N,V:NEXT N this is a small optimization for less code: we poke the
sprite bitmap directly into VDP memory, using built in BASIC VPOKE command and
retrieving the address of the start of sprites memory using BASE(14). The BASE command
get information from VDP registers and the 14 one is the sprite memory base address.

• V=16 is the variable that holds the difficult level. Lower the value, more hard it is. We start
with i higher value here.

• X=14 holds the flea X position at the screen, we need to initialize here due to the fact that
each level starts from a different side of the screen, so a new game always start from the left
side. Also, it have a small displacement to make some space between the platform at the
edges of the screeen, so the player have to be really precise when landing at them. My initial

https://webmsx.org/?MACHINE=MSX1&DISK=https://github.com/holzhey/floh/raw/master/floh.dsk
https://webmsx.org/?MACHINE=MSX1&DISK=https://github.com/holzhey/floh/raw/master/floh.dsk

idea was to limit the movement at both sides of the screen, but this makes the game play
slower and i wanted to achieve a very fast and smooth one!

30 V=V-1:Y=0:IY=1:IX=0:CLS:C=50:DATA
60,66,165,129,165,153,66,60:D=12:E=14:G=25-V

• V=V-1 decrements the difficult level control, actually increasing it.
• Y=0:IY=1:IX=0 intialize Y position and both X and Y increment values. We already

initialized X before and we don't do it again here, since the flow behaviour of each level...
we keep last X position for each new level.

• CLS just clear the screen.
• C=50 prepare the X position that is used inside level rendering loop at line 35. We draw the

first and last platform statically, since they are relevant for the game play (they must be there
and must be easy to achieve during the game play). So, we skip the first one here and start
from 50.

• DATA 60,66,165,129,165,153,66,60 is just a smile icon bitmap in decimal
notation.

• D=12:E=14:G=25-V we are counting chars per line here, so we store some values for
usage at line below. We need two colors and the platform spacing value. Without this, we go
beyond 120 chars at the next line!

35 S=V+RND(1)*20:L=RND(1)*50:LINE(C,150-L)-(C+S,165-
L),D,BF:LINE(C+(S/2)-2,165-L)-(C+
(S/2)+2,191),E,BF:C=C+S+G

Here we loop rendering the platforms using V to define the size of them. As we go to next levels,
the size get smaller.

• S=V+RND(1)*20 define the size of the platform to be rendered, using V to control the
level/size of them.

• L=RND(1)*50 define the height of the platform, relative to a fixed position (minimum for
a good game play).

• LINE(C,150-L)-(C+S,165-L),D,BF draw the box for the top part of the platform. It
should have color 12 (dark green) because we check for collisions with this color to detect
jumps. We use the stored color value, on order to save one char.

• LINE(C+(S/2)-2,165-L)-(C+(S/2)+2,191),E,BF draw the base of the
platform. This is pure graphical appeal, we do not check for collisions with this, so we use a
different color here: 14 (grey). We draw it in the middle part of the size (width) of the
platform determined by S. We use the stored value, in order to save another char (after i did
it, i realize that other optimization already saved what i need... :-(

• C=C+S+G increment the position for the next platform, using the size plus the level spacing
pre calculated at line 30.

38 IF C<200 THEN 35 ELSE FOR F=10 TO 240 STEP
220:LINE(F,150)-(F+20,165),12,BF:LINE(F+8,166)-
(F+12,191),14,BF:NEXT F

• IF C<200 then 35 repeat the line 35 until we got column 200. Remember, we will
draw the last platform in a few bytes, so we don't need to draw it. Since the screen have 256
columns, we stop the loop just before having enough space to draw the last one.

• ELSE FOR F=10 TO 240 STEP 220:LINE(F,150)-

(F+20,165),12,BF:LINE(F+8,166)-(F+12,191),14,BF:NEXT F is a small
tricky loop to render the first and the last platforms. Instead of have lots of LINE commands
(that take lots of chars, we are limited here!) we use this loop that begin at column 10 (first
platform) and finishes at column 240, but the step value will loop at values 10 then 230 (last
platform column). So, is just to reduce the amount of chars in the line.

39 LINE(0,188)-(255,191),4,BF:LINE(0,185)-
(255,187),5,BF:PLAY
"O3S8M1T120L16CR16CE.","O3S8M1T120L16FR16GO5C.":H=0

• LINE(0,188)-(255,191),4,BF:LINE(0,185)-(255,187),5,BF just draw
the water level, using 2 degress of blue: 4 (dark blue) and 5 (bright blue).

• PLAY "O3S8M1T120L16CR16CE.","O3S8M1T120L16FR16GO5C." plays the
initial music, just 3 polyphonic notes. We need to reset the envelope and timing since we
change them for other sounds later.

• H=0 reset the control of the jump height. We start from 0 here and count the number of
interactions at each jump, in order to know the jump height. Smaller jump height means the
flea is weak and we need to kill it... :-(

40 H=H+1:J=0:IY=IY+1:Y=Y+IY:X=X+IX:PUTSPRITE 0,
(X,Y),15,0:IF POINT(X+4,Y+IY)=12 THEN J=1 ELSE IF Y>192
THEN 80

• H=H+1 increment the jump height (iteration counter, actually).
• J=0 is our flag to determine if there is a jump or not, see handling in this line later.
• IY=IY+1 adds 1 to Y increment value. This behaves like gravity, increasing the falling

speed each iteration.
• Y=Y+IY adds the Y increment to the Y position.
• X=X+IX adds the X increment to the X position. We handle the X increment value later,

when we read keyboard keys.
• PUTSPRITE 0,(X,Y),15,0 draw the sprite (our smiley icon) at depth 0, position X,Y,

color 15 (white) and sprite bitmap number 0 (remember? we used the begin of the memory
address for sprites, so numer 0 here, the first one).

• IF POINT(X+4,Y+IY)=12 THEN J=1 ELSE IF Y>192 THEN 80 here we check
for the color in the screen at position X+4 (almost the center of the sprite, since it have 8
bits/pixels width). If the color matches a platform hit, we set our jump flag (J) to 1.
Otherwise, we check if the flea hits the water, going to line 80 to kill it in that scenario.

42 C=STICK(0):IF C=3 THEN IX=IX+1 ELSE IF C=7 THEN IX=IX-
1

• C=STICK(0):IF C=3 THEN IX=IX+1 ELSE IF C=7 THEN IX=IX-1 read the
keyboard arrows and as right or left was pressed, increase the X increment value or decrease
it. This give us that inertial movement behavior.

44 IF J=0 THEN 40 ELSE IY=-IY:PLAY "M3300S8T250O4A":IF
H<8 THEN 80 ELSE H=0

• IF J=0 THEN 40 just repeat the iteration, since we don't have anything else to deal (no
jump).

• ELSE IY=-IY:PLAY "M3300S8T250O4A" since we have a jump here, let's invert the

Y increment value (like a jump does) and play some bouncing sound (we setup the volume
envelope here to a volume down ramp, and use a long note to do it).

• IF H<8 THEN 80 ELSE H=0 but, if the last height value was too small, means the flea
is weak... dead... so we goto line 80 to kill it, otherwise we just reset the jump height in
order to count it again.

55 IF W=0 AND X>230 THEN W=1:GOTO 30 ELSE IF W=1 AND X<30
THEN W=0:GOTO 30 ELSE GOTO 40

• IF W=0 AND X>230 THEN W=1:GOTO 30 in case we are going from left-to-right
flow and we hit the right side in this jump, let's invert the flow direction and go to next level.
We do that from line 30, that recreate everything but keeping the level and x position.

• ELSE IF W=1 AND X<30 THEN W=0:GOTO 30 is the same approach, but from
right-to-left flow. Please note that we only evaluate if the flea achieve the other extremity of
the screen when it jumps (in our case, when it touches the platform).

• ELSE GOTO 40 is a normal jump, no extremity was achieved, just go to main loop.

80 PLAY "O3S8M100C":FOR F=15 TO 0 STEP -1:COLOR
F,F,F:NEXT F:COLOR 5,0,0:X=14:W=0:V=16:GOTO 30

• PLAY "O3S8M100C" since we are dead, play some dark sound... we use an envelope to
help on that.

• FOR F=15 TO 0 STEP -1:COLOR F,F,F:NEXT F:COLOR 5,0,0 just flashes
the screen and reset the game colours after that. This happens while we are playing the
sound.

• X=14:W=0:V=16:GOTO 30 we need to setup the initial values for X, W and V in order
to restart drawing level after death. Of course, we can also jump to line 10, but i decided to
avoid that sprite processing at begining (also the screen command, are a bit slow).

	FLOH
	Game info
	Files description
	The game
	How to play
	Using an emulator
	Game logic
	10 DEFINT A-Z:SCREEN 2,0,0:COLOR 5,0,0:W=0:FOR N=0 TO 7:READ V:VPOKE BASE(14)+N,V:NEXT N:V=16:X=14
	30 V=V-1:Y=0:IY=1:IX=0:CLS:C=50:DATA 60,66,165,129,165,153,66,60:D=12:E=14:G=25-V
	35 S=V+RND(1)*20:L=RND(1)*50:LINE(C,150-L)-(C+S,165-L),D,BF:LINE(C+(S/2)-2,165-L)-(C+(S/2)+2,191),E,BF:C=C+S+G
	38 IF C<200 THEN 35 ELSE FOR F=10 TO 240 STEP 220:LINE(F,150)-(F+20,165),12,BF:LINE(F+8,166)-(F+12,191),14,BF:NEXT F
	39 LINE(0,188)-(255,191),4,BF:LINE(0,185)-(255,187),5,BF:PLAY "O3S8M1T120L16CR16CE.","O3S8M1T120L16FR16GO5C.":H=0
	40 H=H+1:J=0:IY=IY+1:Y=Y+IY:X=X+IX:PUTSPRITE 0,(X,Y),15,0:IF POINT(X+4,Y+IY)=12 THEN J=1 ELSE IF Y>192 THEN 80
	42 C=STICK(0):IF C=3 THEN IX=IX+1 ELSE IF C=7 THEN IX=IX-1
	44 IF J=0 THEN 40 ELSE IY=-IY:PLAY "M3300S8T250O4A":IF H<8 THEN 80 ELSE H=0
	55 IF W=0 AND X>230 THEN W=1:GOTO 30 ELSE IF W=1 AND X<30 THEN W=0:GOTO 30 ELSE GOTO 40
	80 PLAY "O3S8M100C":FOR F=15 TO 0 STEP -1:COLOR F,F,F:NEXT F:COLOR 5,0,0:X=14:W=0:V=16:GOTO 30

